

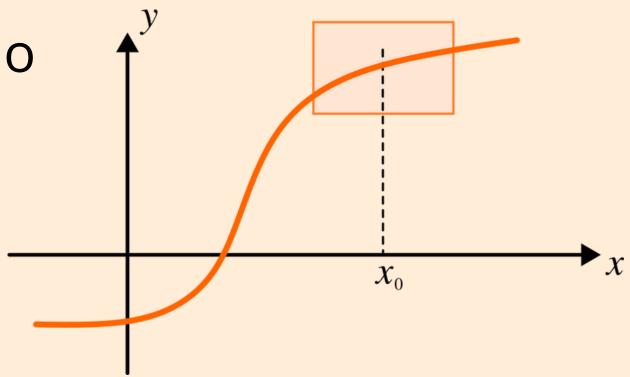
https://mmugnaine.github.io/eel/teaching/Calculo1

Referências:

- THOMAS, George B. Cálculo. São Paulo: Pearson Addison Wesley, 2009. v.1., 1994. v.1.
- GUIDORIZZI, Hamilton. Um curso de cálculo. Rio de Janeiro: Livros Técnicos e Científicos, 2001. v.1.

Em muitas aplicações do Cálculo, estamos interessados em valores de uma função f(x) que estejam próximos de um número x_0 mas que não necessariamente iguais a x_0

De fato, há muitos casos em que o ponto não está nem no domínio da função, isto é, $f(x_0)$ não está definida



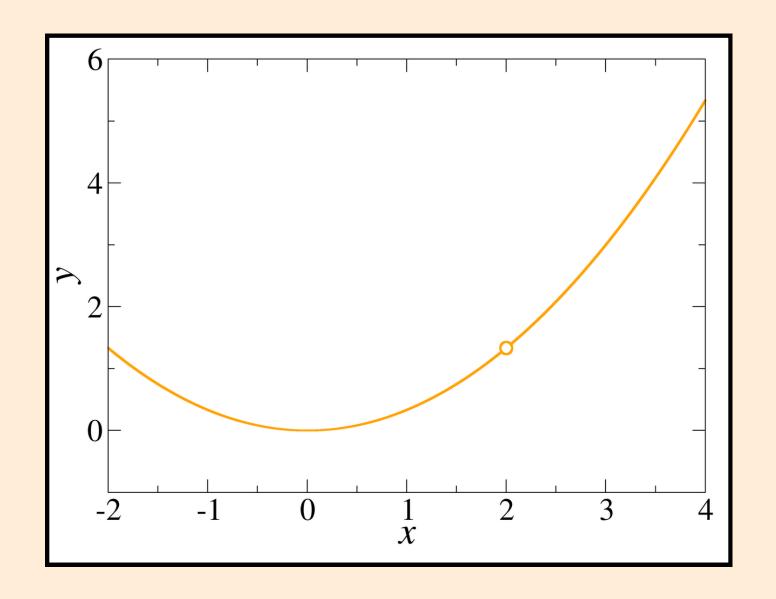
Por exemplo, vamos considerar a função

$$f(x)=rac{x^3-2x^2}{3x-6}$$

x=2 o Não está no domínio da função

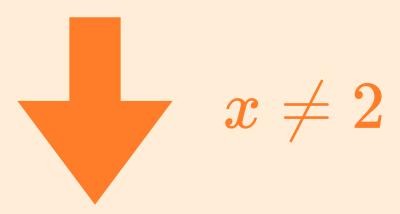
Qual o valor da função quando x é muito próximo de 2?

$$f(x)=rac{x^3-2x^2}{3x-6}$$

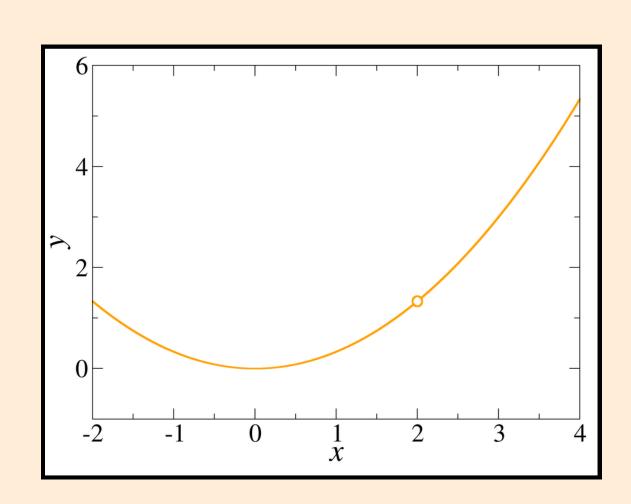


\boldsymbol{x}	f(x)	$oldsymbol{x}$	f(x)
1,9	1,20333333333333	2,01	1,3467
1,99	1,32003333333333	2,001	1,33466699999942
1,999	1,332000333333327	2,0001	1,33346666999751
1,9999	1,33320000333049	2,00001	1,33334666670724
1,99999	1,33332000000877	2,000001	1,3333346667852
1,999999	1,33333200027621	2,0000001	1,33333333333333
1,9999999	1,33333320109344	2,000000001	1,33333333333333

$$f(x)=rac{x^3-2x^2}{3x-6}$$



$$f(x)=rac{x^3-2x^2}{3x-6}$$



$$f(x)=rac{x^2}{3}$$

Se uma função é definida em todo um intervalo aberto contendo um número real x_0 , exceto possivelmente no próprio x_0 , podemos nos perguntar

- 1.À medida que x está cada vez mais próximo de x_0 (mas $x \neq x_0$), o valor de f(x) tende para um número real? (L)
- 2. Podemos tornar o valor da função tão próximo de L quanto queiramos, escolhendo x suficiente próximo de x_0 ?

Se uma função é definida em todo um intervalo aberto contendo um número real x_0 , exceto possivelmente no próprio x_0 , podemos nos perguntar

- 1.À medida que x está cada vez mais próximo de x_0 (mas $x \neq x_0$), o valor de f(x) tende para um número real? (L)
- 2. Podemos tornar o valor da função tão próximo de L quanto queiramos, escolhendo x suficiente próximo de x_0 ?

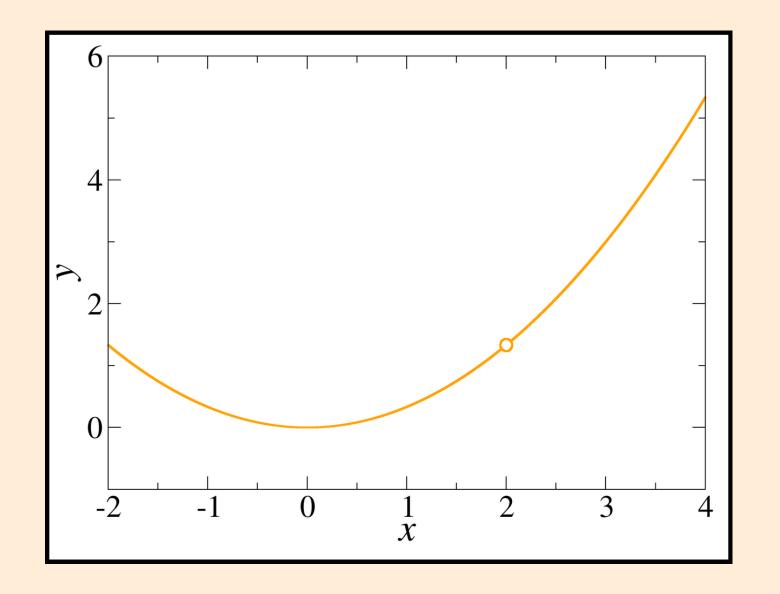
Se sim, temos:

$$\lim_{x \to x_0} f(x) = L$$

$$\lim_{x o x_0} f(x) = L$$

ullet os valores de f(x) ficarão próximos ao número real L sempre que a variável x estiver próxima de x_0 , em qualquer lado de x_0 .

$$f(x)=rac{x^3-2x^2}{3x-6}$$



\boldsymbol{x}	f(x)	\boldsymbol{x}	f(x)
1,9	1,20333333333333	2,01	1,3467
1,99	1,32003333333333	2,001	1,33466699999942
1,999	1,33200033333327	2,0001	1,33346666999751
1,9999	1,33320000333049	2,00001	1,33334666670724
1,99999	1,33332000000877	2,000001	1,3333346667852
1,999999	1,33333200027621	2,0000001	1,33333333333333
1,9999999	1,33333320109344	2,000000001	1,33333333333333

$$\lim_{x o 2} f(x) = rac{4}{3}$$

Cálculo de limites por substituição

Em muitos casos, é possível calcular o limite apenas substituindo os valor de x_0 na função. Esta é uma propriedade que é válida para um conjunto específico de funções, as **funções contínuas.**

Cálculo de limites por substituição

Em muitos casos, é possível calcular o limite apenas substituindo os valor de x_0 na função. Esta é uma propriedade que é válida para um conjunto específico de funções, as **funções contínuas.**

$$\lim_{x \to 13} 4$$

$$\lim_{x \to 3} x$$

$$\lim_{x o 2} (5x-3)$$

$$\lim_{x o -2}rac{3x+4}{x+5}$$

Cálculo de limites por substituição

As vezes precisamos trabalhar com a expressão antes de realizar a substituição

$$\lim_{x o 1}rac{x^2+x-2}{x-1}$$

$$\lim_{x o 9}rac{x-9}{\sqrt{x}-3}$$

Teorema: Se L, M, c, k são números reais, $\lim_{x o c} f(x) = L$ e $\lim_{x o c} g(x) = M$, temos

$$\lim_{x o c}(f(x)\pm g(x))=L\pm M$$

$$\lim_{x o c}(f(x)\cdot g(x))=L\cdot M$$

$$\lim_{x \to c} (k \cdot f(x)) = k \cdot L$$

$$igg|_{x o c} \lim_{x o c} (f(x))^{r/s} = L^{r/s}, ext{ desde } ext{que } r,s,\in \mathbb{Z}, s
eq 0 ext{ e } L^{r/s}\in \mathbb{R}$$

$$\lim_{x o c}\left(rac{f(x)}{g(x)}
ight)=rac{L}{M}$$

$$\lim_{x o c}(x^3+4x^2-3)$$

$$\lim_{x o c}rac{x^4+x^2-1}{x^2+5}$$

$$\lim_{x o -2} \sqrt{4x^2-3}$$

Teorema: O limite de polinômios pode ser obtido por substituição

$$P(x) = a_n x^x + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

$$\lim_{x o c} P(x) = a_n c^x + a_{n-1} c^{n-1} + \ldots + a_1 c + a_0$$

Teorema: Se P(x) e Q(x) são polinômios e Q(c)
eq 0

$$\lim_{x o c}rac{P(x)}{Q(x)}=rac{P(c)}{Q(c)}$$

Teorema: Se P(x) e Q(x) são polinômios e Q(c)
eq 0

$$\lim_{x o c}rac{P(x)}{Q(x)}=rac{P(c)}{Q(c)}$$

Exemplo:
$$\lim_{x \to -1} \frac{x^3 + 4x^2 - 3}{x^2 + 5}$$

Teorema: Se P(x) e Q(x) são polinômios e Q(c)
eq 0

$$\lim_{x o c}rac{P(x)}{Q(x)}=rac{P(c)}{Q(c)}$$

- Este teorema só pode ser aplicado quando o denominador é não nulo.
- Em alguns casos onde o denominador é nulo, podemos eliminar algebricamente estes denominadores e obter o limite por substituição da fração simplificada

Teorema: Se P(x) e Q(x) são polinômios e Q(c)
eq 0

$$\lim_{x o c}rac{P(x)}{Q(x)}=rac{P(c)}{Q(c)}$$

$$\lim_{x o 1}rac{x^2+x-2}{x^2-x}$$

$$\lim_{x o 0}rac{\sqrt{x^2+100}-10}{x^2}$$

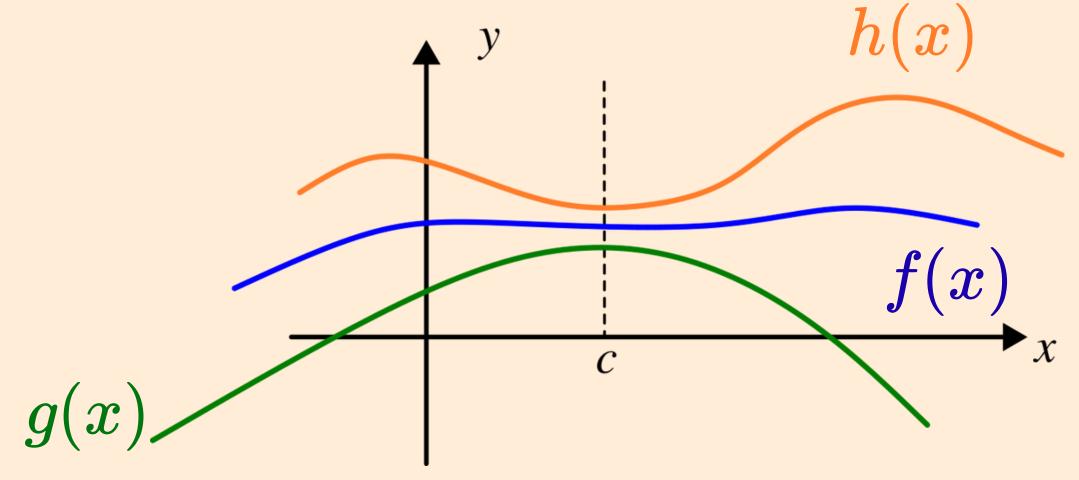
Teorema do confronto

Teorema: Suponha que $g(x) \leq f(x) \leq h(x)$ para qualquer intervalo aberto contendo c, exceto possivelmente no próprio c. Supondo também que

$$\lim_{x o c}g(x)=\lim_{x o c}h(x)=L$$

Então,

$$\lim_{x o c}f(x)=L$$



Teorema do confronto

Exemplo: Seja

$$1 - \frac{x^2}{4} \le u(x) \le 1 + \frac{x^2}{2}$$

$$\lim_{x o 0} u(x) = ?$$

Teorema do confronto

Teorema: Se $f(x) \leq g(x)$ para todos os valores de x em certo intervalo aberto contendo c, exceto possivelmente no próprio c, e os limites de f e g existem, então

$$\lim_{x o c}f(x)\leq \lim_{x o c}g(x)$$

Definição: Sejaf(x) definida em um intervalo aberto em torno de x_0 , exceto talvez em x_0 . Dizemos que o limite de f(x), conforme x se aproxima de x_0 , é o número L, e escrevemos

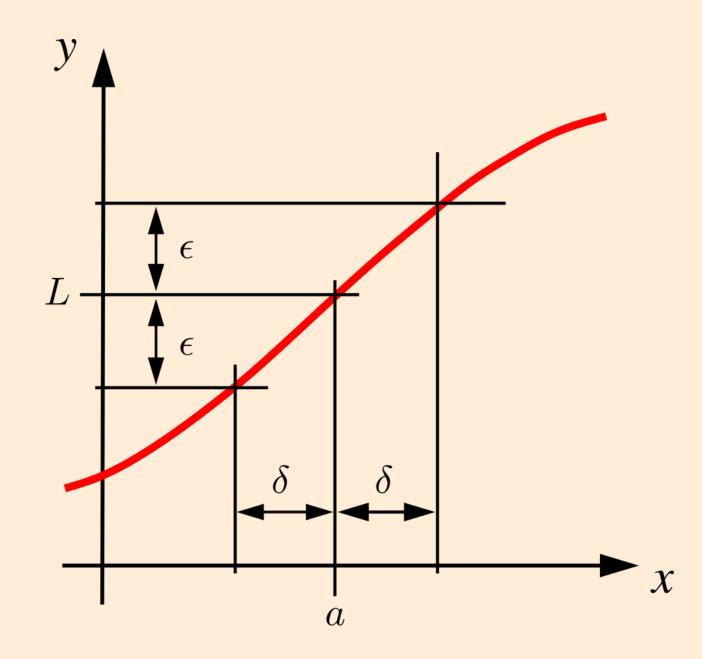
$$\lim_{x o x_0}f(x)=L$$

se para cada número $\epsilon>0$ existir um número correspondente $\delta>0$ tal que, para todos os valores de x

$$|0<|x-x_0|<\delta\longrightarrow |f(x)-L|<\epsilon$$

$$\lim_{x o x_0}f(x)=L:0<|x-x_0|<\delta\longrightarrow |f(x)-L|<\epsilon$$

O limite de f(x) em x_0 não depende de $f(x_0)$ (caso ele exista), mas sim dos valores que f(x) assume nos pontos próximos de x_0 .



Exemplo: Vamos mostrar pela definição que

$$\lim_{x o 1}(5x-3)=2$$

$$\lim_{x o x_0}f(x)=L:0<|x-x_0|<\delta\longrightarrow |f(x)-L|<\epsilon$$

Exemplo: Provar que o limite abaixo não existe

$$\lim_{x o 0} rac{|x|}{x}$$

$$\lim_{x o x_0}f(x)=L:0<|x-x_0|<\delta\longrightarrow |f(x)-L|<\epsilon$$

Determinando δ algebricamente

Para o limite

$$\lim_{x o 5}\sqrt{x-1}=2$$

determinar $\delta>0$ para $\epsilon=1$, isto é, encontrar δ tal que

$$0 < |x-5| < \delta \longrightarrow |f(x)-2| < 1$$

Limites laterais - à direita

Definição: Dizemos que f(x) tem **um limite L à direita em** x_0 e escrevemos

$$\lim_{x o x_0^+}f(x)=L$$

se para qualquer número $\epsilon>0$ existe um correspondente $\delta>0$, de maneira que, para todos os valores de $\,x$

$$|x_0 < x < x_0 + \delta \longrightarrow |f(x) - L| < \epsilon$$

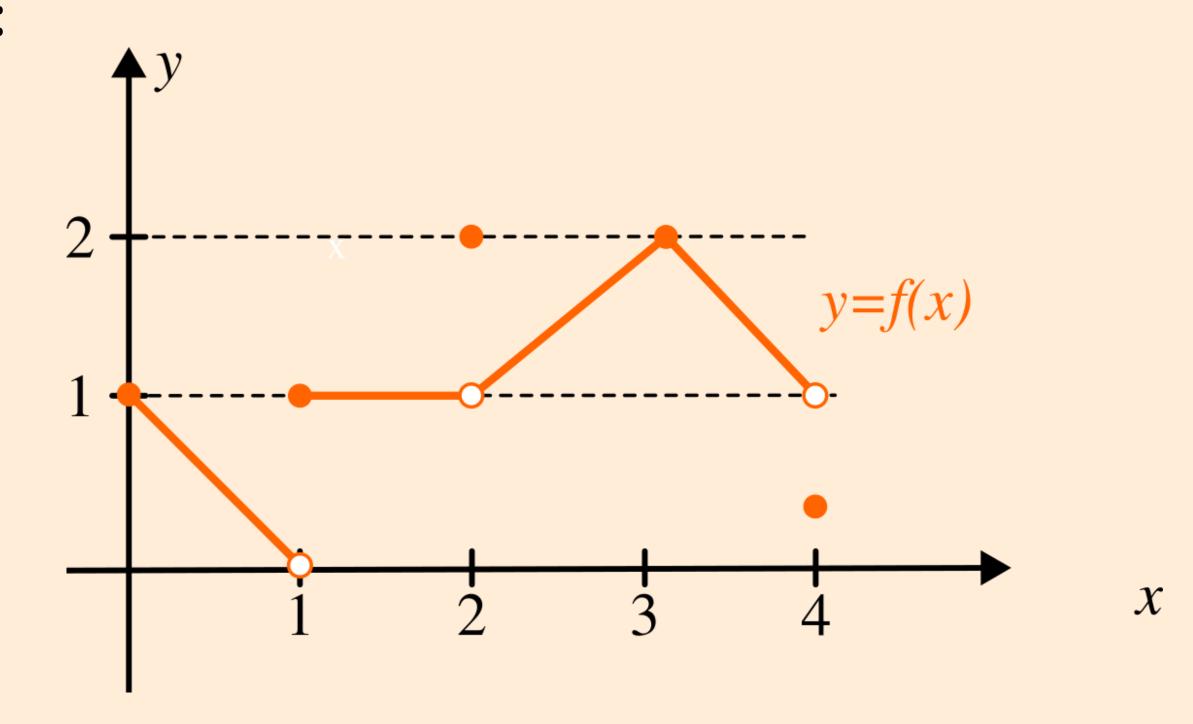
Limites laterais - à esquerda

Definição: Dizemos quef(x) tem **um limite L à esquerda em** x_0 e escrevemos

$$\lim_{x o x_0^-}f(x)=L$$

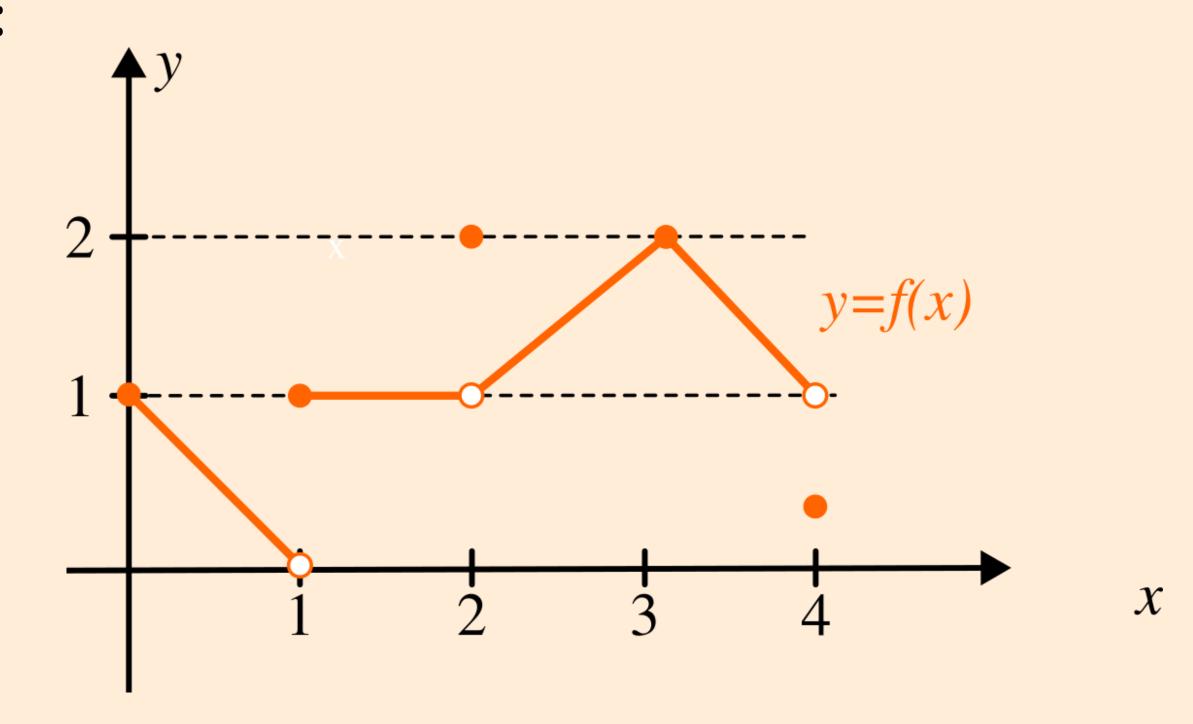
se para qualquer número $\epsilon>0$ existe um correspondente $\delta>0$, de maneira que, para todos os valores de $\,x$

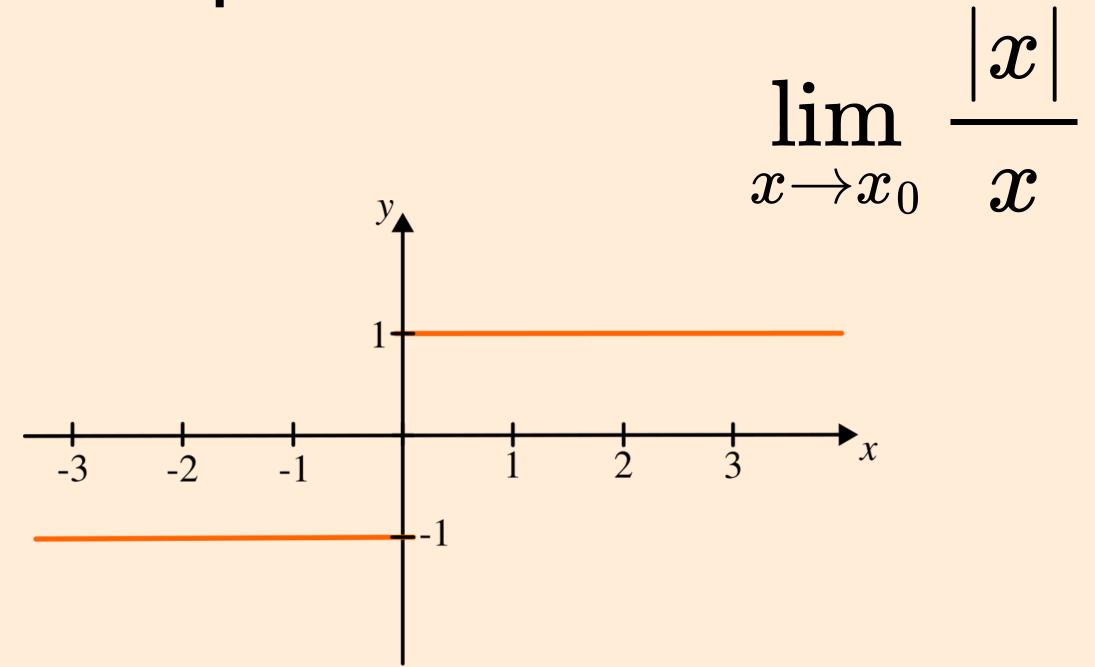
$$|x_0 - \delta < x < x_0 \longrightarrow |f(x) - L| < \epsilon$$



Teorema: Uma função f(x)terá limite quando x se aproximar de **se e somente se** tiver um limite lateral à esquerda e um à direita, e os dois limites laterais forem **iguais**:

$$\lim_{x o c}f(x)=L\Longleftrightarrow\lim_{x o c^-}f(x)=L ext{ e }\lim_{x o c^+}f(x)=L$$





Limites laterais + Teorema do confronto

$$\lim_{ heta o 0} rac{ ext{sen } heta}{ heta}$$

Limites laterais + Teorema do confronto

$$\lim_{\theta \to 0} \frac{\operatorname{sen} \theta}{\theta} = 1$$

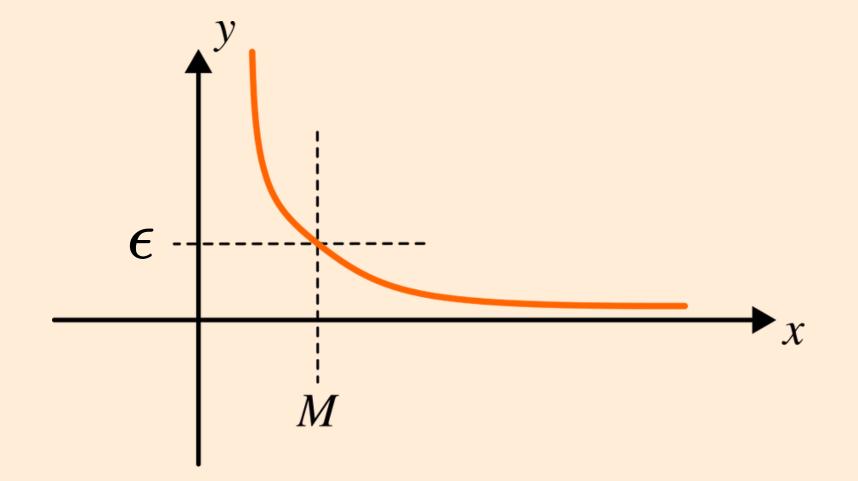
Definição: Dizemos que f(x) possui **limite L quando** x **tende ao infinito** e escrevemos

$$\lim_{x o \infty} f(x) = L$$

se para cada $\epsilon>0~$ existe um número M correspondente tal que, para todos os valores de $\,x\,$

$$|x>M\Longrightarrow |f(x)-L|<\epsilon$$

$$\lim_{x o \infty} f(x) = L \Longleftrightarrow egin{cases} orall \epsilon > 0, \exists \ \delta > 0, \ ext{com} \ \delta > M \ ext{tal que} \ x > \delta o L - \epsilon < f(x) < L + \epsilon \end{cases}$$



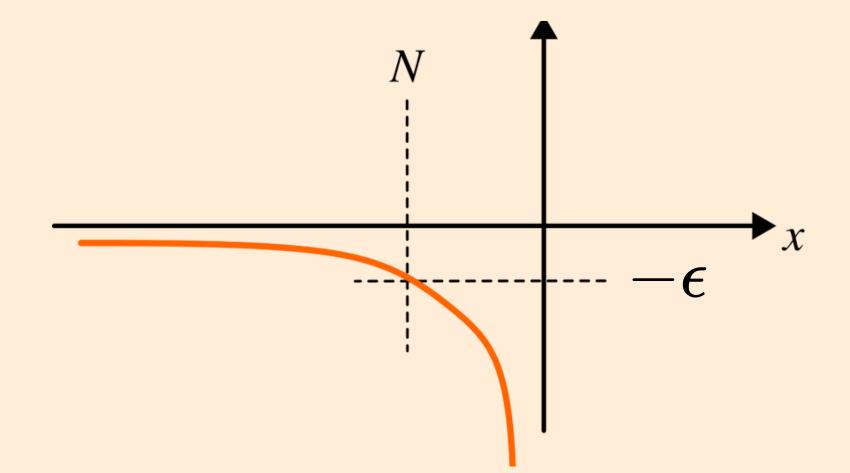
Definição: Dizemos que f(x) possui **limite L quando** x **tende a menos infinito** e escrevemos

$$\lim_{x o -\infty} f(x) = L$$

se para cada $\epsilon>0~$ existe um número N~ correspondente tal que, para todos os valores de x

$$|x| < N \Longrightarrow |f(x) - L| < \epsilon$$

$$\lim_{x o \infty} f(x) = L \Longleftrightarrow egin{cases} orall \epsilon > 0, \exists \ \delta > 0, \ ext{com} \ -\delta < N \ ext{tal que} \ x < -\delta o L - \epsilon < f(x) < L + \epsilon \end{cases}$$



Exemplo: Demonstrar que

$$\lim_{x o \pm \infty} \frac{1}{x} = 0$$

Limites tendo ao infinito apresentam propriedades de soma, subtração, multiplicação por uma constante, produto, quociente e potenciação como as mostradas anteriormente.

$$\lim_{x o \infty} = \left(5 + \frac{1}{x}\right)$$

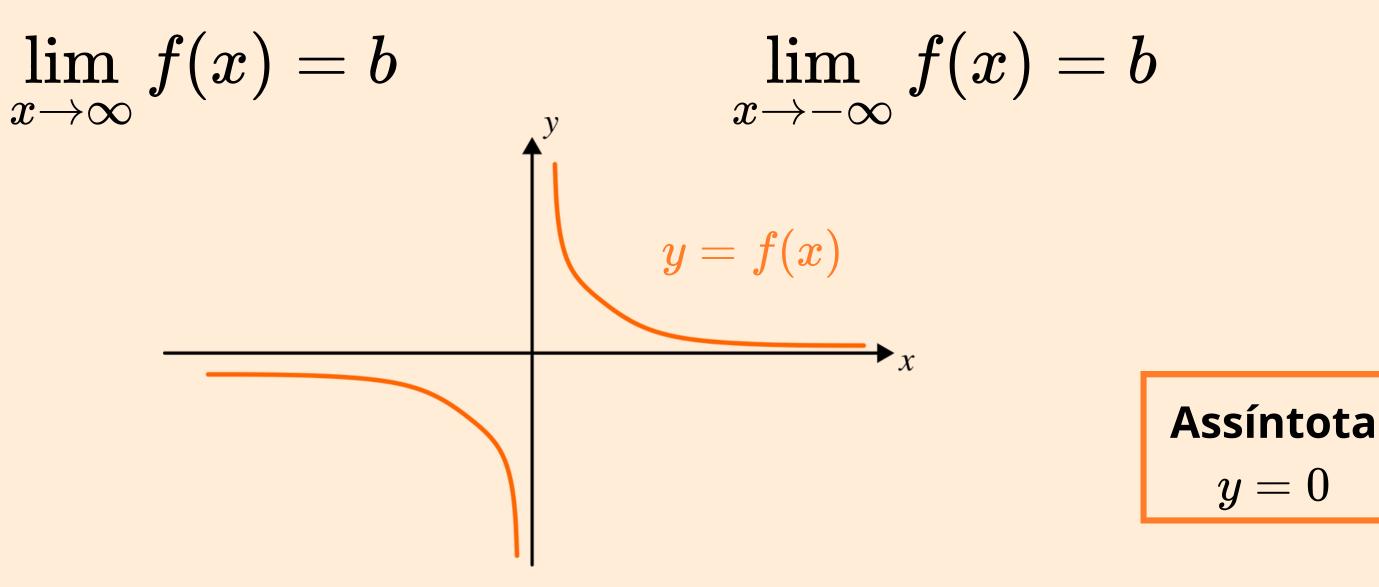
$$\lim_{x o\infty}=rac{5x^2+8x-3}{3x^2+2}$$

$$ightarrow \lim_{x o -\infty} = rac{\pi\sqrt{3}}{x^2}$$

$$\lim_{x o -\infty}=rac{11x+2}{2x^3-1}$$

Assíntota horizontal

Definição: A reta $\,y=b\,$ é um **assíntota horizontal** do gráfico da função $\,y=f(x)\,$ se



Assíntota horizontal

Exemplo: Qual o limite $\displaystyle\lim_{x o\pm\infty}f(x)$, onde $\displaystyle f(x)=2+rac{ ext{sen }x}{x}$?

Assíntota horizontal

Exemplo: Qual o limite $\lim_{x o\pm\infty}f(x)$, onde $f(x)=2+rac{ ext{sen }x}{x}$?

$$y=2$$

Assíntota oblíqua

 Caso o numerador de uma função racional tenha um grau maior do que o denominador o gráfico apresentará uma assíntota oblíqua (inclinada)

$$f(x) = (mx + b) + R(x)$$

Assíntota

Resto

Assíntota oblíqua

Exemplo:

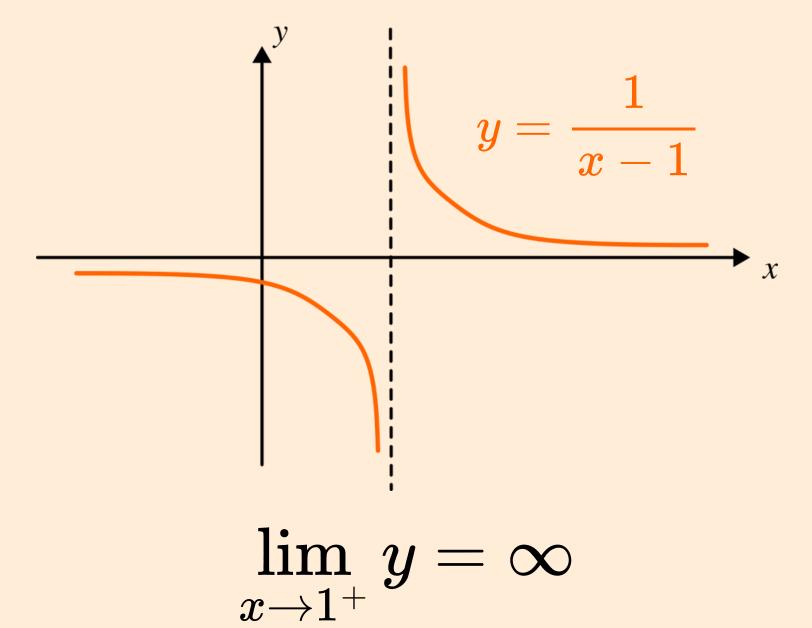
$$f(x) = rac{2x^3 - 3}{7x + 4}$$

Assíntota oblíqua

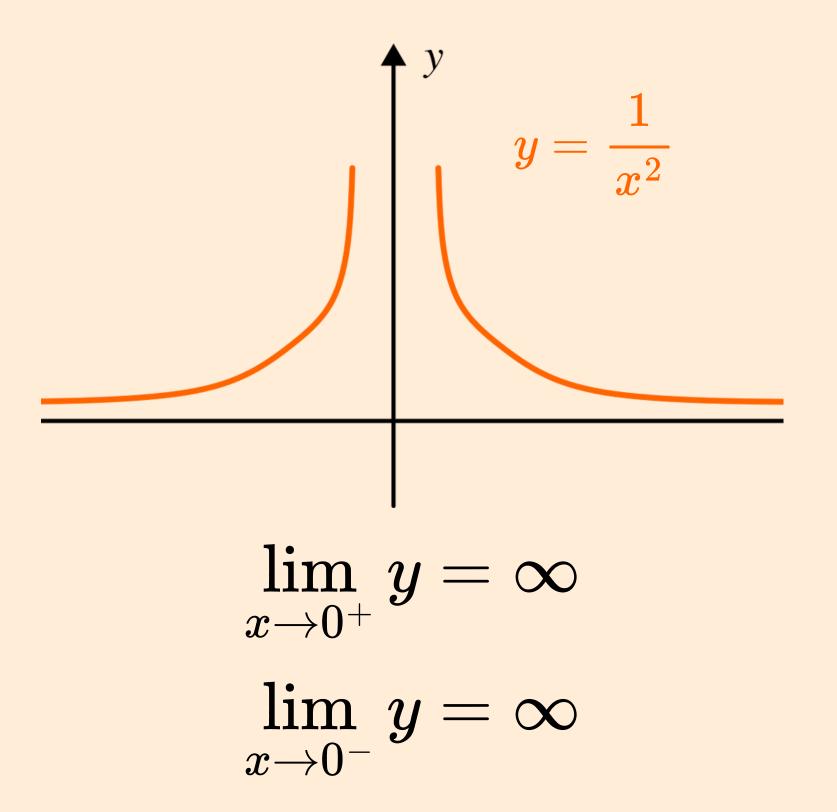
Exemplo:

$$f(x) = rac{2x^2 - 3}{7x + 4}$$

$$f(x) = \left(\frac{2}{7}x - \frac{8}{49}\right) + \frac{(-115)}{49(7x+4)}$$



$$\lim_{x o 1^-}y=-\infty$$



Definição: Dizemos que f(x) **tende ao infinito** quando x tende a x_0 , isto é $\lim_{x o x_0} f(x) = \infty$

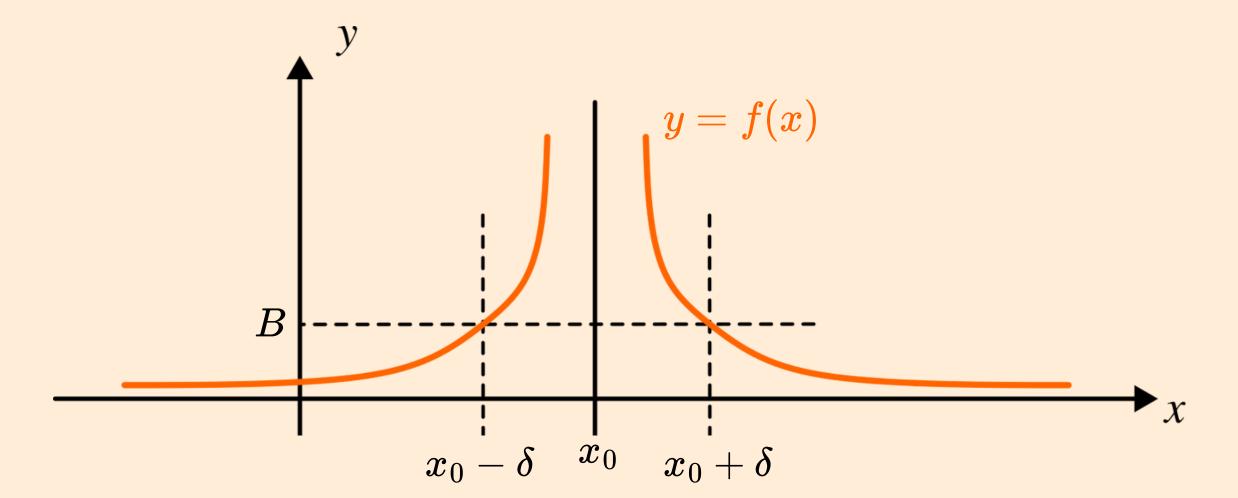
se para cada número real positivo B existe um $\delta>0$ correspondente tal que para todo x

$$|0<|x-x_0|<\delta\longrightarrow f(x)>B$$

$$\lim_{x o x_0}f(x)=\infty$$

$$|0<|x-x_0|<\delta\longrightarrow f(x)>B$$

Para $x_0 - \delta < x < x_0 + \delta$, $\ f(x)$ fica acima da reta y = B



Definição: Dizemos que f(x) tende ao menos infinito $\, q$ uando x tende a x_0 , isto é $\lim_{x o x_0} f(x) = -\infty$

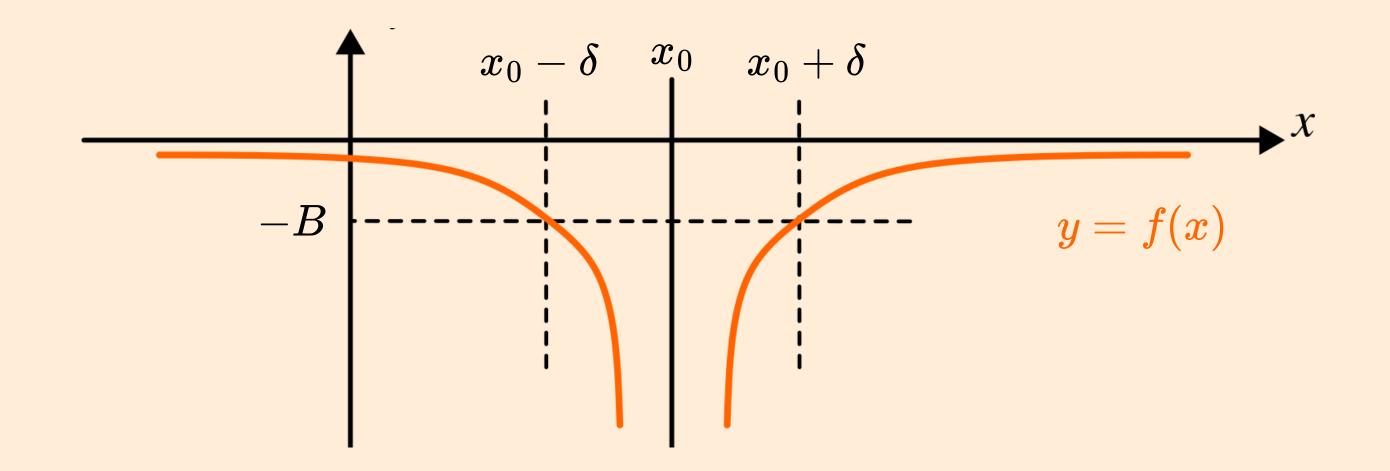
se para cada número real negativo -B existe um $~\delta>0$ correspondente tal que para todo x

$$|0<|x-x_0|<\delta\longrightarrow f(x)<-B$$

$$\lim_{x o x_0}f(x)=-\infty$$

$$|0<|x-x_0|<\delta\longrightarrow f(x)<-B$$

Para $x_0 - \delta < x < x_0 + \delta$, f(x) fica abixo da reta y = -B



Exemplos: Funções racionais podem se comportar de várias maneiras quando próximas ao zero de seus dominadores

$$\lim_{x o 2}rac{(x-2)^2}{x^2-4}$$

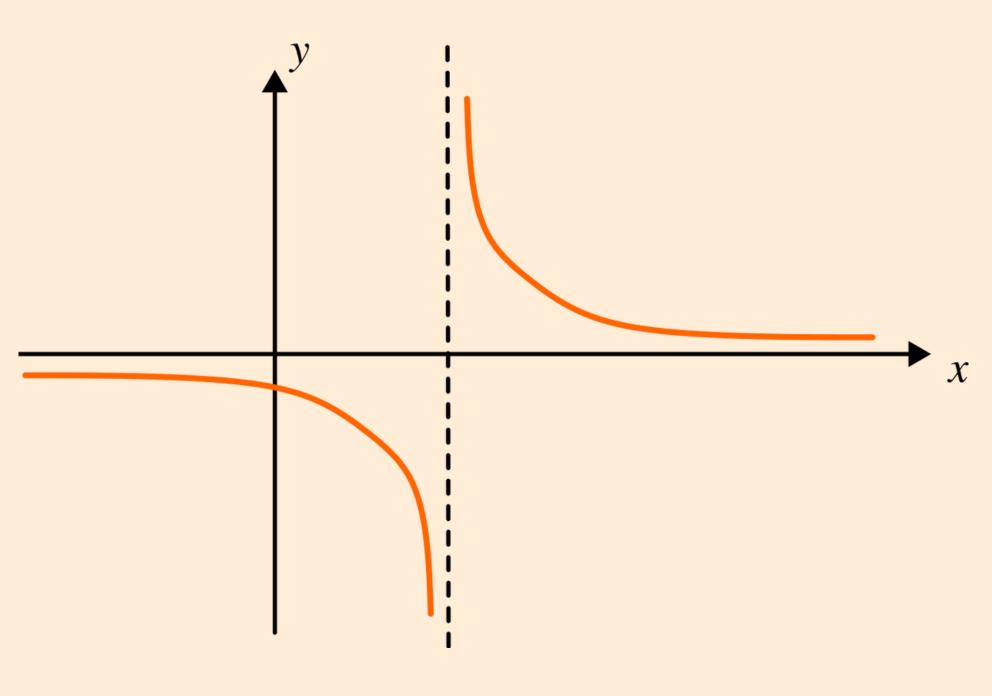
$$\lim_{x o 2}rac{x-3}{x^2-4}$$

$$\lim_{x o 2}rac{x-2}{x^2-4}$$

$$\lim_{x o 2}rac{2-x}{(x-2)^3}$$

Assíntotas verticais

 Observando as figuras esquemáticas, vemos que a distância entre a curva da função e uma reta vertical diminui à medida que a curva se afasta verticalmente da origem



Assíntotas verticais

Definição: Uma reta $\,x=a\,$ é uma assíntota vertical do gráfico de uma função $\,f(x)\,$ se

$$\lim_{x o a^+}f(x)=\pm\infty \qquad \qquad \lim_{x o a^-}f(x)=\pm\infty$$

Assíntotas

Exemplo: Encontrar as assíntotas de

$$f(x) = \frac{x+3}{x+2}$$

$$f(x) = \frac{-8}{x^2 - 4}$$

$$f(x)=rac{x^2-3}{2x-4}$$

Assíntotas

Exemplo: Encontrar as assíntotas de

$$f(x) = \frac{x+3}{x+2}$$

$$y = 1, x = -2$$

$$f(x) = \frac{-8}{x^2 - 4}$$

$$y = 0, x = \pm 2$$

$$f(x)=rac{x^3-3}{2x-4}$$

$$y = \frac{x}{2} + 1, x = 2$$

Termos dominantes

Como vimos, a função

$$f(x)=rac{x^2-3}{2x-4}$$

pode ser reescrita como

$$f(x) = \frac{x}{2} + 1 + \frac{1}{2x - 4}$$

Termos dominantes

$$f(x) = \frac{x}{2} + 1 + \frac{1}{2x - 4}$$

$$f(x) pprox rac{x}{2} + 1 \Longrightarrow x ext{ numericamente grande}$$

$$f(x)pprox rac{1}{2x-4}\Longrightarrow x o 2$$

Termos dominantes

$$f(x) = \frac{x}{2} + 1 + \frac{1}{2x - 4}$$

$$f(x) pprox rac{x}{2} + 1 \Longrightarrow rac{ ext{Termo dominante quando x \'e}}{ ext{numericamente grande}}$$

$$f(x)pprox rac{1}{2x-4}\Longrightarrow rac{ ext{Termo dominante quando x \'e}}{ ext{pr\'oximo de 2}}$$

O número e

De uma sequência com termo geral $a_n = \left(1 + \frac{1}{n}\right)^n$, temos

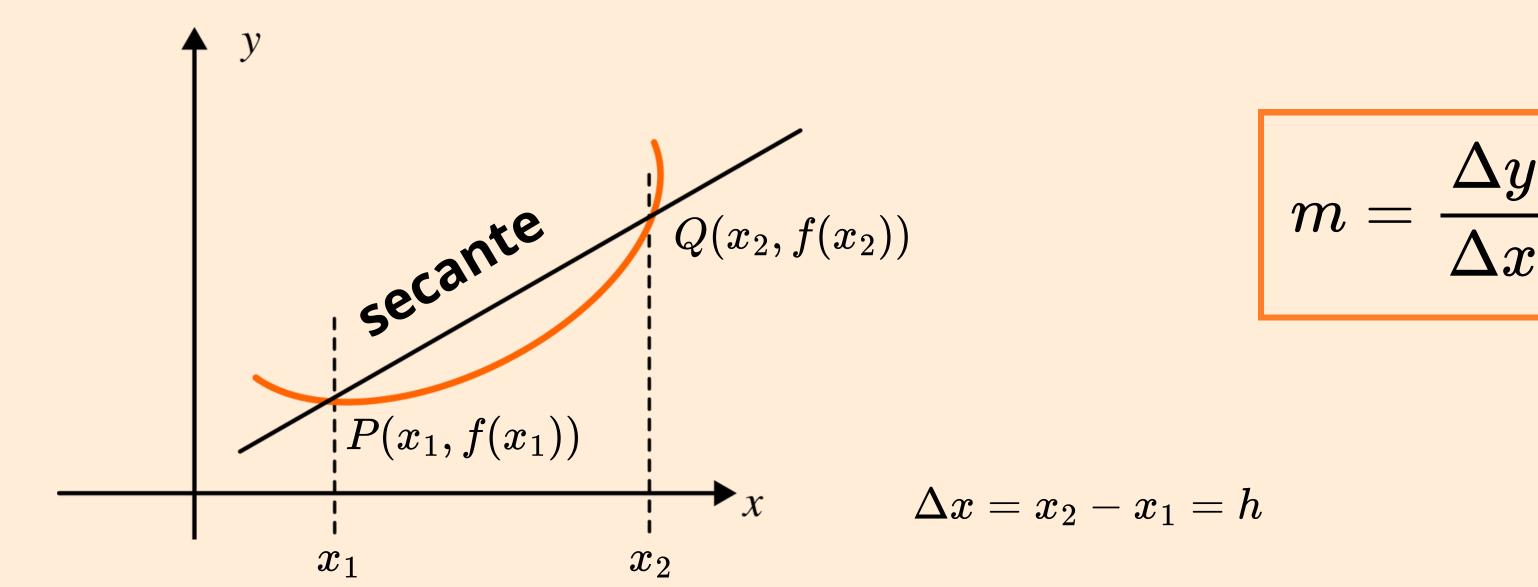
$$\lim_{n o\infty}\left(1+rac{1}{n}
ight)^n=e$$

Taxas instantâneas de variação e reta tangente

Definição: A **taxa média de variação** de uma função y=f(x) em relação a x no intervalo $[x_1,x_2]$ é

$$rac{\Delta y}{\Delta x} = rac{f(x_2) - f(x_1)}{x_2 - x_2} = rac{f(x_1 + h) - f(x_1)}{h}, \qquad h
eq 0$$

$$rac{\Delta y}{\Delta x} = rac{f(x_2) - f(x_1)}{x_2 - x_2} = rac{f(x_1 + h) - f(x_1)}{h}, \qquad h
eq 0$$



Com limites, podemos calcular o **coeficiente angular da reta tangente**, isto é

$$m=\lim_{h o 0}rac{f(x_0+h)-f(x_0)}{h}$$

Da mesma forma, conseguimos calcular taxas de variação instantânea.