Derivadas de funções reais

https://mmugnaine.github.io/eel/teaching/Calculo1

Referências:

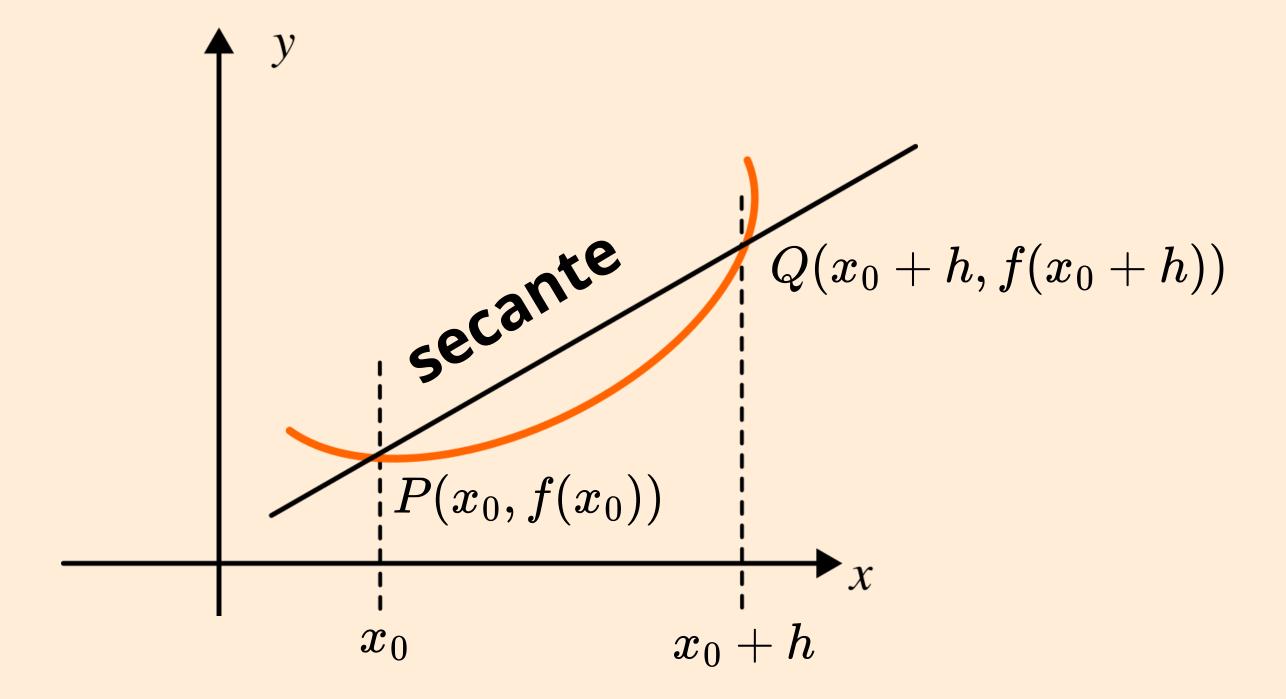
- THOMAS, George B. **Cálculo**. São Paulo: Pearson Addison Wesley, 2009. v.1., 1994. v.1.
- GUIDORIZZI, Hamilton. **Um curso de cálculo**. Rio de Janeiro: Livros Técnicos e Científicos, 2001. v.1.

Derivadas de funções reais

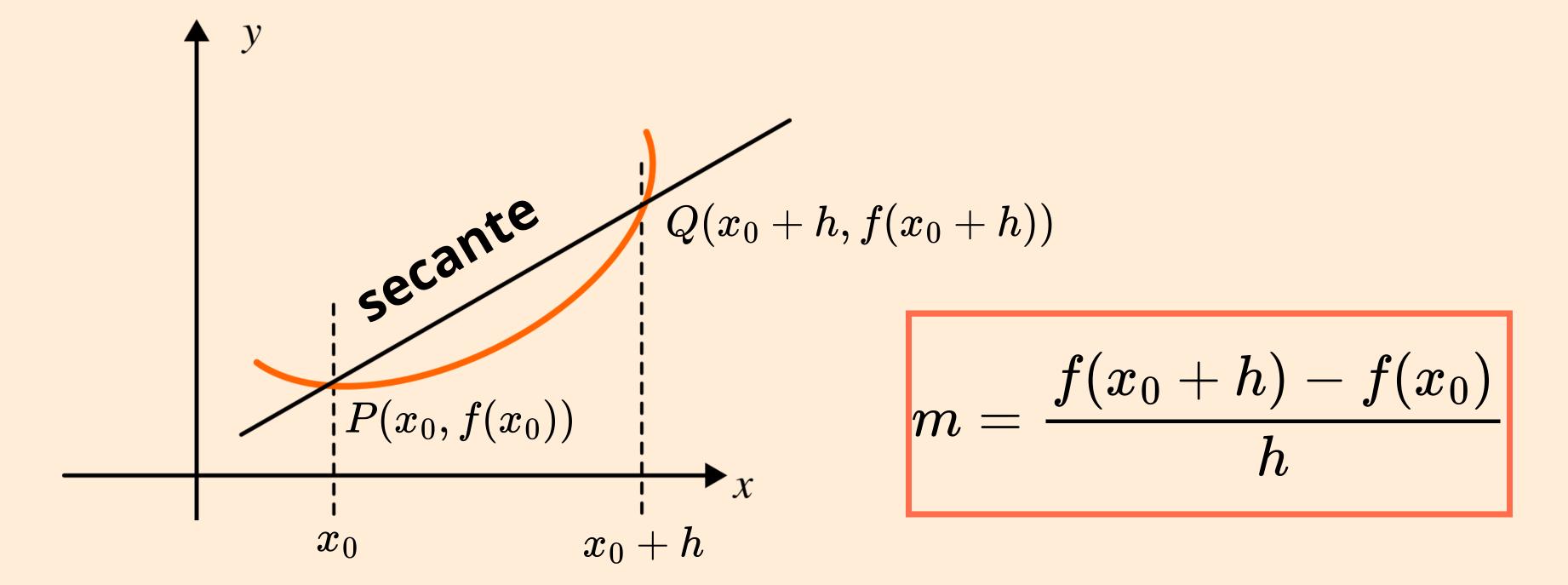
Limites típicos na geometria, física e outras áreas

$$\lim_{x o x_0}rac{f(x)-f(x_0)}{x-x_0}$$

Limites típicos na geometria, física e outras áreas



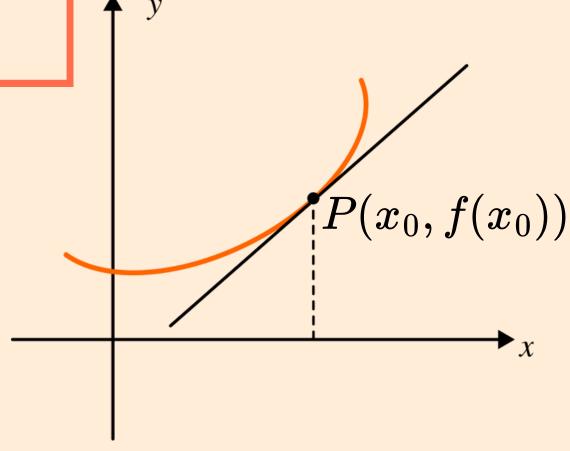
Limites típicos na geometria, física e outras áreas



Definição: O coeficiente angular da curva y=f(x) em um ponto $P(x_0,f(x_0))$ é o número

$$m=\lim_{h o 0}rac{f(x_0+h)-f(x_0)}{h}$$

desde que o limite exista.

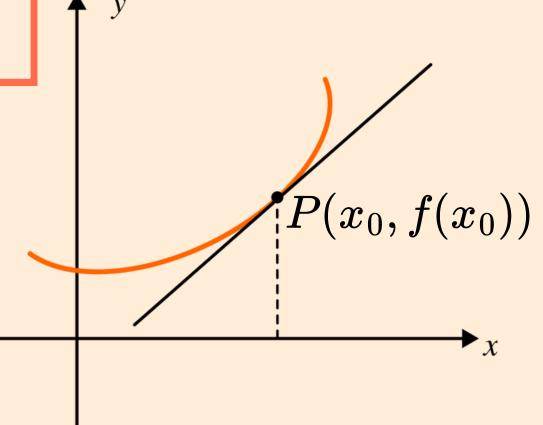


Definição: O coeficiente angular da curva y=f(x) em um ponto $P(x_0,f(x_0))$ é o número

$$m=\lim_{h o 0}rac{f(x_0+h)-f(x_0)}{h}$$

desde que o limite exista.

A reta tangente à curva é a reta que passa por P e tem esse coeficiente angular



Exemplo: Determinar o coeficiente angular da curva $y=\frac{1}{x}$ em $x=a\neq 0$

Taxa instantânea de variação

Definição: A taxa média de variação de y=f(x) em relação a x no intervalo $[x_1,x_2]$ é

$$rac{\Delta y}{\Delta x} = rac{f(x_2) - f(x_1)}{x_2 - x_1} = rac{f(x_1 + h) - f(x_1)}{h}, \quad h
eq 0$$

Taxa instantânea de variação

$$rac{\Delta y}{\Delta x} = rac{f(x_0+h)-f(x_0)}{h}, \quad h
eq 0$$

Esta expressão também é chamada de razão incremental ou diferenças dividida de f em x_0 com incremento h.

Taxa instantânea de variação

$$rac{\Delta y}{\Delta x} = rac{f(x_0+h)-f(x_0)}{h}, \quad h
eq 0$$

Esta expressão também é chamada de razão incremental ou diferenças dividida de f em x_0 com incremento h.

• Se a razão incremental tem um limite finito definido, esse limite é denominado derivada de f em x_0

ullet Tanto o coeficiente da reta tangente quanto a taxa de variação instantânea estão relacionadas com a derivada de f em x_0 .

 $^{\circ}$ Agora, vamos estudar a derivada como uma **função** derivada de f , considerando o limite em cada ponto do domínio de f .

 $Q(x_0+h,f(x_0+h))$ x x_0 x_0+h

Definição: A derivada de uma função f(x) em relação a variável x é a função f' cujo valor em x é

$$f'(x) = \lim_{h o 0} rac{f(x+h)-f(x)}{h}$$

desde que o limite exista.

$$f'(x) = \lim_{h o 0} rac{f(x+h)-f(x)}{h}$$

- O $\operatorname{domínio}$ de f' é o conjunto de pontos no domínio de f para o qual o limite existe
- ullet Se f' existe para determinado valor de x dizemos que f é derivável em x
 - \circ Se f'existe em qualquer ponto no domínio, dizemos que f é derivável

$$f'(x) = \lim_{h o 0} rac{f(x+h)-f(x)}{h}$$

ullet Se escrevemos z=x+h, então h=z-x e z o x quando h o 0 . Assim, temos a fórmula alternativa

$$f'(x) = \lim_{z o x} rac{f(z)-f(x)}{z-x}$$

Exemplos:

$$\bullet \ f(x) = \frac{x}{x-1}$$

•
$$f(x) = \sqrt{x}$$

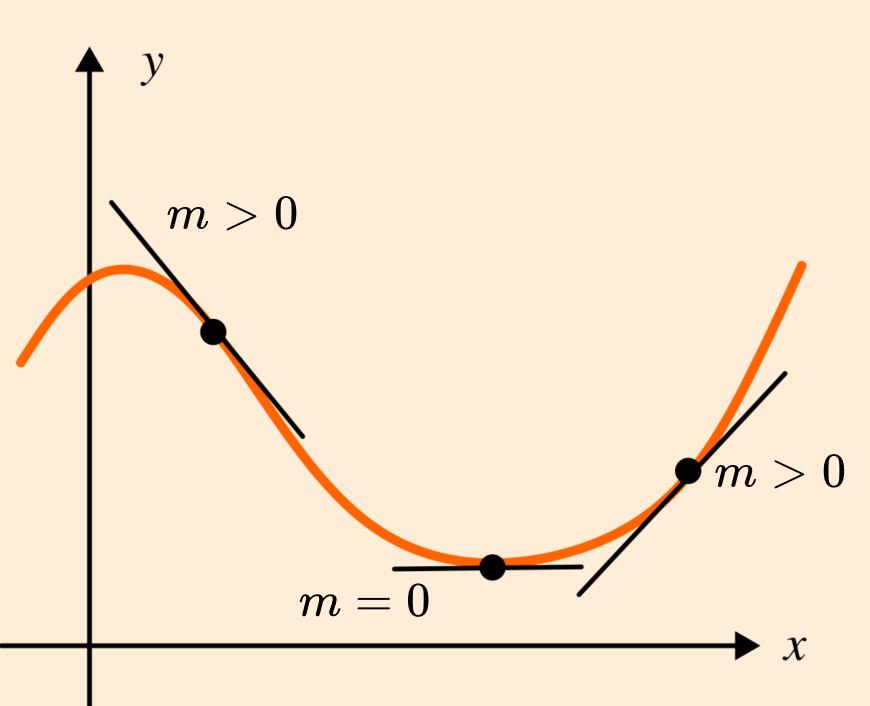
Notações:

$$f'(x)=y'=rac{dy}{dx}=rac{df}{dx}=rac{d}{x}f(x)=D(f(x))=D_xf(x)$$

Notações: para indicar o valor de uma derivada em um número específico, escrevemos

$$\left.f'(a)=rac{dy}{dx}
ight|_{x=a}=rac{df}{dx}
ight|_{x=a}=rac{d}{dx}f(x)
ight|_{x=a}$$

Representação gráfica: para representar derivadas, esboçamos retas tangentes em pequenos intervalos. Observando os coeficientes angulares destas retas, verificamos onde a taxa de variação é negativa, positiva ou nula e, consequentemente, identificamos onde a taxa de variação é crescente ou decrescente



Derivadas laterais

- Uma função y=f(x) será **derivável** em um intervalo <u>aberto</u>, finito ou infinito, se tiver uma derivada em cada ponto do intervalo
- Uma função será **derivável** em um intervalo **fechado** [a,b] se for derivável no interior (a,b) e se os limites

$$\lim_{h o 0^+}rac{f(a+h)-f(a)}{h} \qquad \qquad \lim_{h o 0^-}rac{f(b+h)-f(b)}{h}$$

existirem nas extremidades.

Derivadas laterais

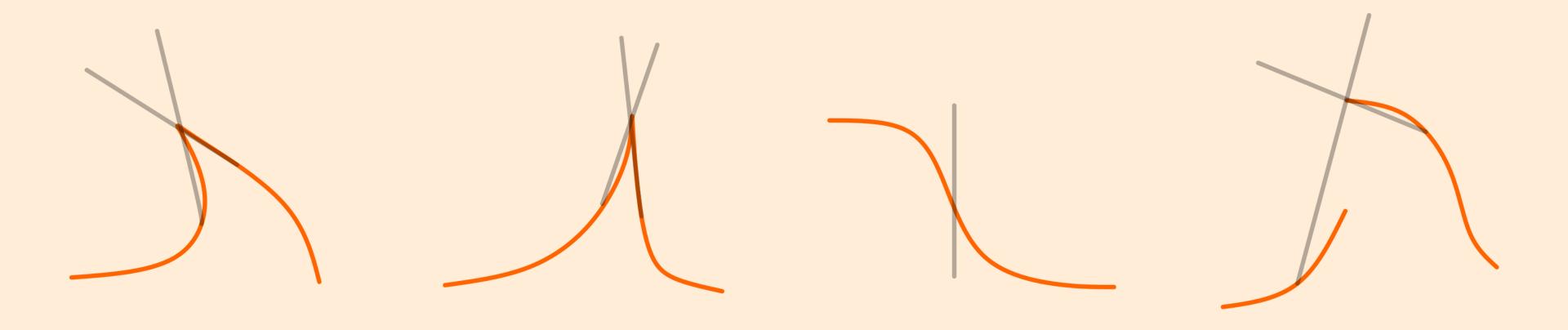
- Derivadas à direita e à esquerda poder definidas em qualquer ponto do domínio de uma função.
 - Uma função terá uma derivada em um ponto se e somente se tiver derivadas à direita e à esquerda nesse ponto e se estas derivadas laterais forem iguais.

Exemplo: f(x) = |x|

Não existência de derivadas em um ponto

• Uma função terá derivada em um ponto x_0 se os coeficientes angulares das retas secantes que passam pelo ponto $P(x_0, f(x_0))$ e um ponto Q próximo no gráfico tenderem a um limite à medida que Q se aproxima de P.

Não existência de derivadas em um ponto



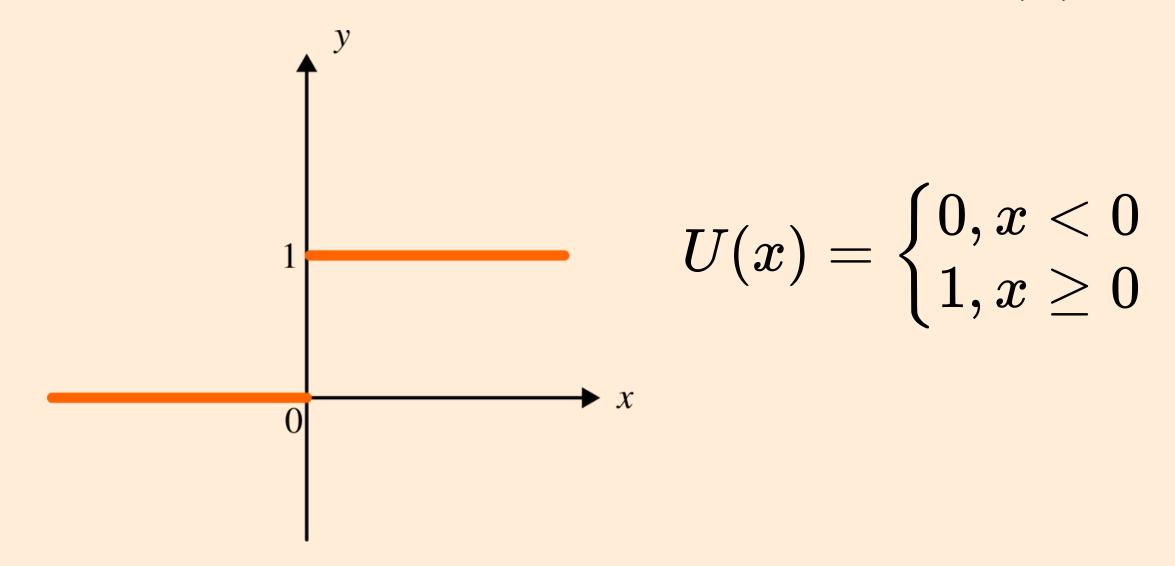
Teorema: Se f tem uma derivada em x=c , então f é contínua em c .

Teorema: Se f tem uma derivada em x=c , então f é contínua em c .

A recíproca não é verdadeira

Teorema (Propriedade do valor intermediário): Se a e b são dois pontos quaisquer de um intervalo em que f derivável, então sua derivada assume todos os valores entre f'(a) e f'(b).

Teorema (Propriedade do valor intermediário): Se a e b são dois pontos quaisquer de um intervalo em que f derivável, então sua derivada assume todos os valores entre f'(a) e f'(b).



Teorema (Propriedade do valor intermediário): Se a e b são dois pontos quaisquer de um intervalo em que f derivável, então sua derivada assume todos os valores entre f'(a) e f'(b).

Não tem a propriedade do valor intermediário e não pode ser derivada de uma função da reta real.

Regra 1: Função constante

• Se f tem o valor constante f(x)=c, então

$$\frac{df(x)}{dx} = \frac{d}{dx}c = 0$$

Regra 2: Potenciação para inteiros positivos

ullet Se n for um inteiro positivo, então

$$\frac{d}{dx}x^n=nx^{n-1}$$

Regra 3: Multiplicação por uma constante

ullet Se f é uma função derivável de x e c é uma constante, então

$$rac{d}{dx}(cf) = crac{df}{dx}$$

Regra 4: Derivada da soma/diferença

• Se u e v são funções deriváveis de x, então a soma/diferença das duas, $u\pm v$, também é derivável em qualquer ponto onde ambas são deriváveis. Nesses pontos,

$$rac{d}{dx}(u\pm v)=rac{du}{dx}\pmrac{dv}{dx}$$

Exemplo:

$$y = x^3 + \frac{4}{3}x^2 - 5x + 1$$

Regra 5: Função exponencial natural

$$rac{d}{dx}e^x=e^x$$

Regra 6: Produto de funções

ullet Se u e v são funções deriváveis de x , então o produto $u\cdot v$ também é, e

$$rac{d}{dx}(u\cdot v)=vrac{du}{dx}+urac{dv}{dx}$$

Regra 6: Produto de funções

ullet Se u e v são funções deriváveis de x , então o produto $u\cdot v$ também é, e

$$rac{d}{dx}(u\cdot v)=vrac{du}{dx}+urac{dv}{dx}$$

$$(u\cdot v)'=u'v+uv'$$

Regra 6: Produto de funções

Exemplo:

$$y = (x^2 + 1)(x^3 + 3)$$

Regra 7: Quociente de funções

ullet Se u e v são funções deriváveis de x , e se v
eq 0 , então o quociente $\dfrac{u}{v}$ também é derivável em x e

$$rac{d}{dx} \left(rac{u}{v}
ight) = rac{rac{du}{dx}v - urac{dv}{dx}}{v^2}$$

Regra 8: Potenciação para inteiros negativos

ullet Se u é um inteiro negativo e x
eq 0 , então

$$\frac{d}{dx}x^n=nx^{n-1}$$

Exemplos:

•
$$y = \frac{4}{x^3}$$

$$\bullet \ y = \frac{(x-1)(x^2-2x)}{x^4}$$

Derivadas de ordem superior

- ullet Se y=f(x) é uma função derivável, então sua derivada também é uma função
 - \circ Se f'(x) também for derivável, podemos derivá-la a fim de obter uma nova função, denotada por f''(x) e denominada segunda derivada.
 - Assim, podemos obter a n-ésima derivada

$$y^{(n)} = rac{d}{dx} y^{(n-1)} = rac{d^n y}{dx^n} = D^n y$$

Derivadas de ordem superior

Exemplo:

•
$$y = x^3 - 3x^2 + 2$$

Resumo

$$op f'(x) = \lim_{h o 0} rac{f(x+h)-f(x)}{h}$$

$$\rightarrow \frac{d}{dx}c = 0$$

$$ightharpoonup rac{d}{dx}x^n = nx^{n-1}$$

$$\longrightarrow \frac{d}{dx}cf = c\frac{d}{dx}f$$

$$\rightarrow \frac{d}{dx}(u\pm v) = \frac{du}{dx} + \frac{dv}{dx}$$

$$\Rightarrow \frac{d}{dx}e^x = e^x$$

$$\rightarrow \frac{d}{dx}(u \cdot v) = u'v + uv'$$

$$\rightarrow \frac{d}{dx} \left(\frac{u}{v} \right) = \frac{u'v - uv'}{v^2}$$