

LOB 1003 - Cálculo 1

Lista de exercícios 2 - Parte 2 2º semestre de 2025

1. Use derivação implícita para determinar $\frac{dy}{dx}$.

a)
$$x^2y + xy^2 = 6$$

b)
$$2xy + y^2 = x + y$$

c)
$$x^2(x-y)^2 = x^2 - y^2$$

d)
$$y^2 = \frac{x-1}{x+1}$$

e)
$$x^{1/2} + y^{1/2} = 1$$

f) x = tgy

g)
$$e^{2x} = \text{sen}(x + 3y)$$

h)
$$y \operatorname{sen}\left(\frac{1}{y}\right) = 1 - xy$$

i) sen
$$(xy) = \frac{1}{2}$$

2. Use a derivada implícita para determinar $\frac{dy}{dx} = \frac{d^2y}{dx^2}$

a)
$$x^2 + y^2 = 1$$

b)
$$v^2 = e^{x^2} + 2x$$

c)
$$2\sqrt{y} = x - y$$

d)
$$x^3 + y^3 = 16$$

3. Use a derivação logarítmica para determinar a derivada de y em relação à variável independente dada.

a)
$$y = \sqrt{x(x+1)}$$

$$b) y = \sqrt{\frac{t}{t+1}}$$

c)
$$y = \sqrt{\theta + 3} \operatorname{sen} \theta$$

d)
$$y = t(t+1)(t+3)$$

e)
$$y = \frac{\theta + 5}{\theta \cos \theta}$$

f)
$$y = \frac{x\sqrt{x^2+1}}{(x+1)^{2/3}}$$

g)
$$y = \sqrt[3]{\frac{x(x-2)}{x^2+1}}$$

4. Determine os valores abaixo.

a) sen
$$\left(\cos^{-1}\left(\frac{\sqrt{2}}{2}\right)\right)$$

b)
$$\operatorname{tg}\left(\operatorname{sen}^{-1}\left(-\frac{1}{2}\right)\right)$$

c)
$$\csc(\sec^{-1} 2) + \cos(tg^{-1}(-\sqrt{3}))$$

d) sen
$$\left(\operatorname{sen}^{-1} \left(-\frac{1}{2} \right) + \cos^{-1} \left(-\frac{1}{2} \right) \right)$$

- e) $\sec(tg^{-1}1 + \csc^{-1}1)$
- 5. Encontre a derivada de y em relação à variável apropriada

$$a) y = \cos^{-1} x^2$$

e)
$$y = \sec^{-1} \frac{1}{t}, 0 < t < 1$$

c)
$$y = \sec^{-1}(2s+1)$$

b) $y = \sin^{-1}\sqrt{2}t$

f)
$$y = \cot^{-1} \sqrt{t}$$

g)
$$y = \ln(tg^{-1}x)$$

d)
$$y = \csc^{-1}(x^2 + 1), x > 0$$
 h) $y = \csc^{-1}(e^t)$

$$y = \csc^{-1}(e^t)$$

i)
$$y = s\sqrt{1 - s^2} + \cos^{-1} s$$

j)
$$y = tg^{-1}\sqrt{x^2-1} + cosec^{-1}x, x > 1$$

k)
$$y = x \operatorname{sen}^{-1} x + \sqrt{1 - x^2}$$

6. Verifique que

a)
$$\frac{d}{dx} \left[x \operatorname{tg}^{-1} x - \frac{1}{2} \ln(1 + x^2) \right] = \operatorname{tg}^{-1} x$$

b)
$$\frac{d}{dx} \left[\frac{x^3}{3} \operatorname{sen}^{-1} x + \frac{x^2 + 2}{9} \sqrt{1 - x^2} \right] = x^2 \operatorname{sen}^{-1} x$$

c)
$$\frac{d}{dx}[(x+1) \operatorname{tg}^{-1} \sqrt{x} - \sqrt{x}] = \operatorname{tg}^{-1} \sqrt{x}$$

d)
$$\frac{d}{dx} \left[-\frac{1}{2} \operatorname{sen}^{-1} \left(\frac{2-x}{x\sqrt{2}} \right) \right] = \frac{1}{x\sqrt{x^2 + 4x - 4}}$$

7. Demonstre a identidade.

a)
$$senh(-x) = -senh x$$

b)
$$\cosh x + \sinh x = e^x$$

c)
$$senh(x+y) = senh x cosh y + cosh x senh y$$

d)
$$\operatorname{cotgh}^2 x - 1 = \operatorname{cosech}^2 x$$

e)
$$senh 2x = 2 senh x cosh x$$

$$f) \frac{1 + \operatorname{tgh} x}{1 - \operatorname{tgh} x} = e^{2x}$$

8. Encontre a derivada e simplifique quando possível.

a)
$$f(x) = x \operatorname{senh} x - \cosh x$$

b)
$$h(x) = \ln(\cosh x)$$

c)
$$y = e^{\cosh 3x}$$

d)
$$f(t) = \operatorname{sech}^2(e^t)$$

e)
$$G(x) = \frac{1 - \operatorname{cosech} x}{1 + \operatorname{cosech} x}$$

f)
$$y = \cosh^{-1} \sqrt{x}$$

g)
$$y = x \operatorname{senh}^{-1} \left(\frac{x}{3} \right) - \sqrt{9 + x^2}$$

h)
$$y = \operatorname{cotgh}^{-1}(\sec x)$$

- 9. Suponha que o raio r da esfera e a área $A=\pi r^2$ de um círculo sejam funções deriváveis de t. Escreva uma equação que relacionada $\frac{dA}{dt}$ e $\frac{dr}{dt}$.
- **10.** O raio r e a altura h de um cilindro circular estão relacionados com o volume V do cilindro pela fórmula $V = \pi r^2 h$.
 - a) Como dV/dt está relacionada a dh/dt se r é constante?
 - b) Como dV/dt está relacionada a dr/dt se h é constante?
 - c) Como dV/dt está relacionada a dr/dt e dh/dt se r e h não são constantes?
- 11. A voltagem V, em volts, a corrente I, em amperes, e a resistência R, em ohms, de um circuito elétrico estão relacionados entre si pela equação V = IR. Suponha que V esteja aumentando a uma taxa de 1 volts/s, enquanto I está diminuindo a uma taxa de 1/3 A/s.
 - a) Qual o valor de dV/dt?
 - b) Qual o valor de dI/dt?
 - c) Qual equação relaciona dR/dt a dV/dt e dI/dt?
 - d) Encontre a taxa com a qual R está variando quando V = 12 e I = 2A.

- 12. Sejam x e y deriváveis de t e seja $s = \sqrt{x^2 + y^2}$ a distância (x,0) e (0,y) no plano xy.
 - a) Como ds/dt está relacionada a dx/dt se y é constante?
 - b) Como ds/dt está relacionado a dx/dt e dy/dt se nem x nem y são constantes?
 - c) Como dx/dt está relacionada a dy/dt se s é constante?
- 13. Determine a linearização L(x) de f(x) quando x = a

a)
$$f(x) = x^3 - 2x + 3$$
, $a = 2$

b)
$$f(x) = x + \frac{1}{x}$$
, $a = 1$

c)
$$f(x) = \operatorname{tg} x$$
, $a = \pi$

d)
$$f(x) = (1+x)^k$$
, $a = 0$

14. Determine *dy*

a)
$$y = x^3 - 3\sqrt{x}$$

b)
$$y = \frac{2x}{1 + x^2}$$

c)
$$2y^{3/2} + xy - x = 0$$

d)
$$y = \text{sen}(5\sqrt{x})$$

e)
$$y = 4 \operatorname{tg} \left(\frac{x^3}{3} \right)$$

f)
$$y = x^2 \sin 2x$$

g)
$$y = tg \sqrt{t}$$

h)
$$y = 3 \csc (1 - 2\sqrt{x})$$

i)
$$y = e^{\sqrt{x}}$$

j)
$$y = \ln(1 + x^2)$$

k)
$$y = tg^{-1}(e^{x^2})$$

1)
$$y = \sec^{-1}(e^{-x})$$

m)
$$y = e^{x/10}$$

n)
$$y = \sqrt{3 + x^2}$$