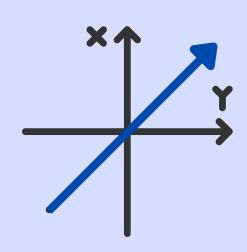
Vetores

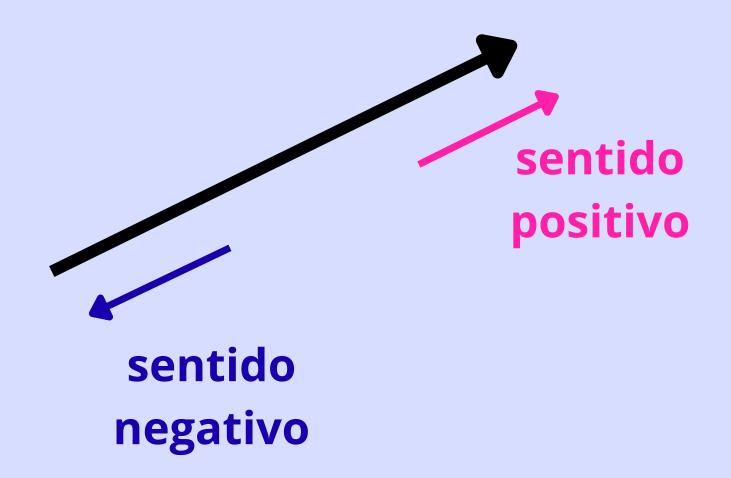
https://mmugnaine.github.io/eel/teaching/GA

• STEINBRUCH, Alfredo and WINTERLE, Paulo. **Geometria Analítica**. McGRAW-HILL, 2a edição, 1987.



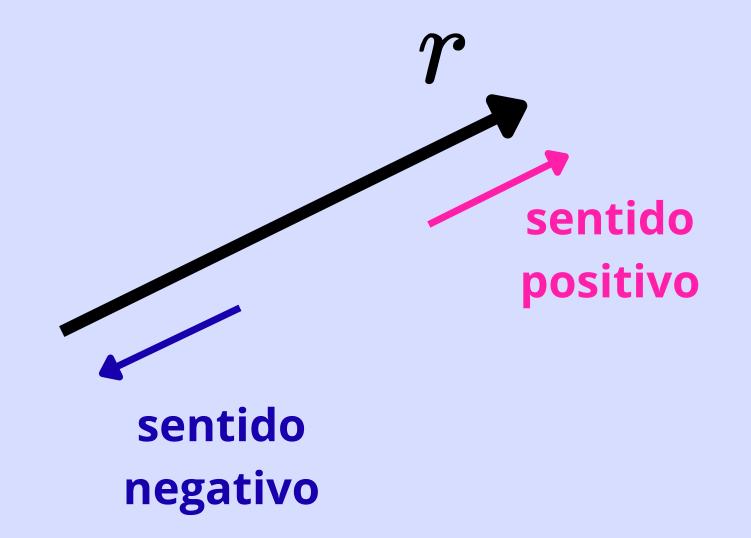
Reta orientada

Uma reta é orientada quando se fixa um sentido que é indicado por uma seta.



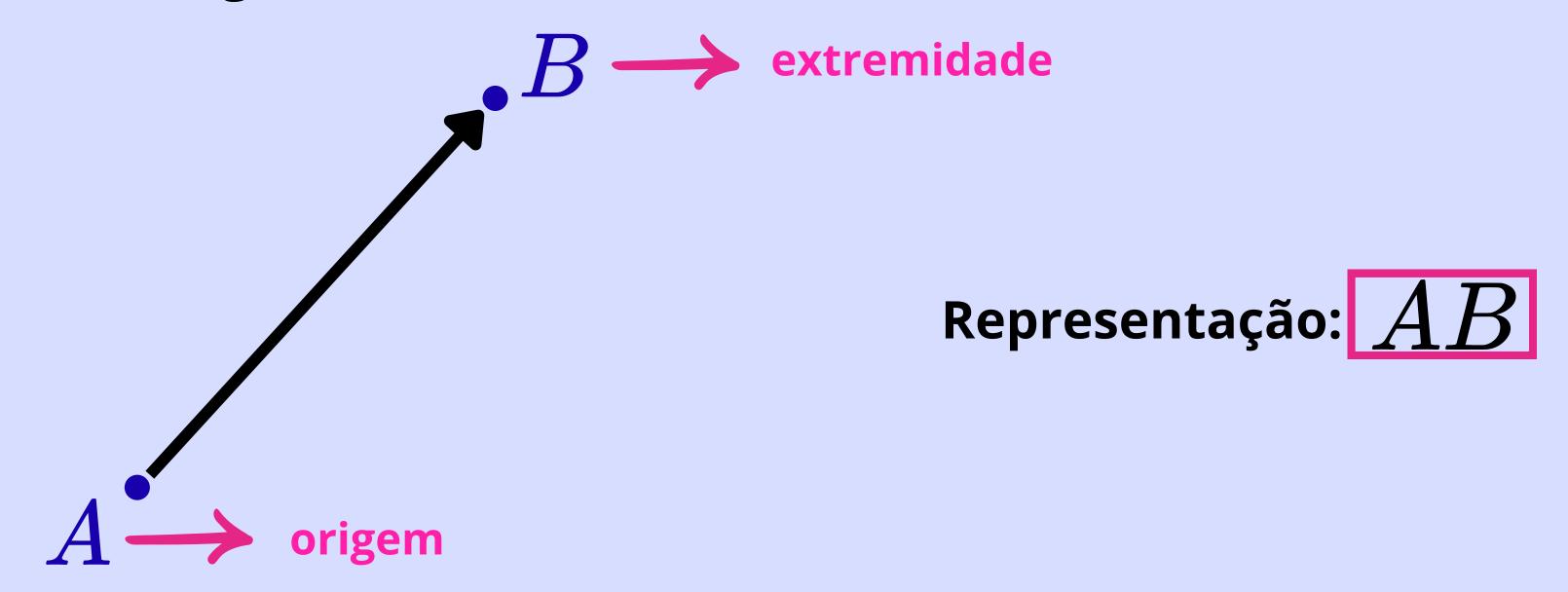
Reta orientada

Uma reta é orientada quando se fixa um sentido que é indicado por uma seta.

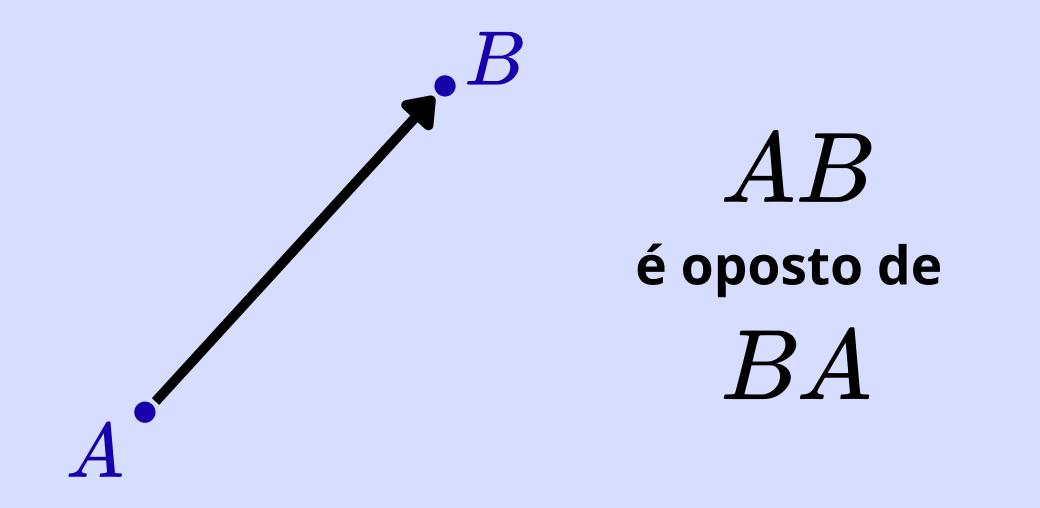


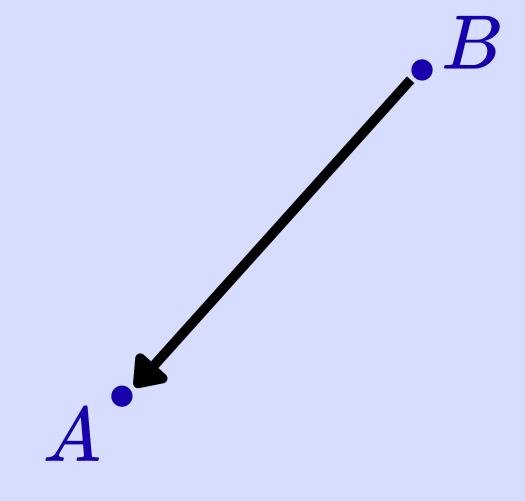
Retas orientadas também são denominadas **eixos**.

Segmentos orientados são determinados por um **par ordenados** de pontos: a **origem** e a **extremidade**.



- Segmento nulo: a origem coincide com a extremidade
- Segmentos opostos:





 Medida de um segmento: definida uma unidade de comprimento, podemos associar um número real não negativo a cada segmento. A medida também é denominada comprimento ou módulo.

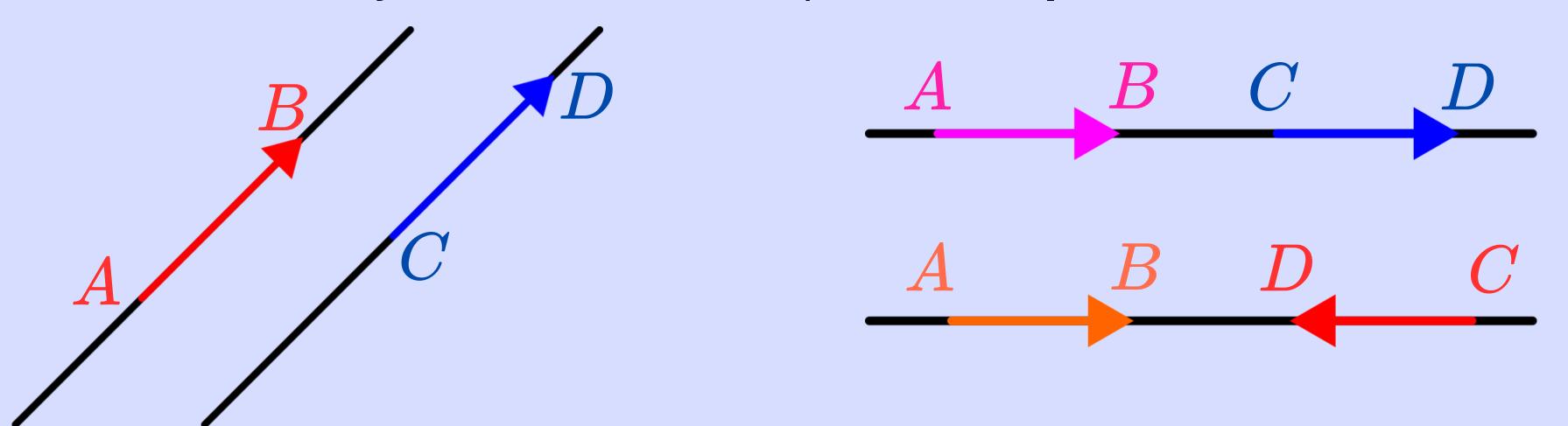
$$\overline{AB} = 5 \text{ u.c.}$$

 Medida de um segmento: definida uma unidade de comprimento, podemos associar um número real não negativo a cada segmento. A medida também é denominada comprimento ou módulo.

$$\overline{AB} = \overline{BA}$$

$$\overline{AB} = 5 \text{ u.c.}$$

- **Direção e sentido:** a direção de um segmento é definida pela sua reta suporte
 - Dois segmentos orientados não nulos têm a mesma direção se suas retas suportes são paralelas

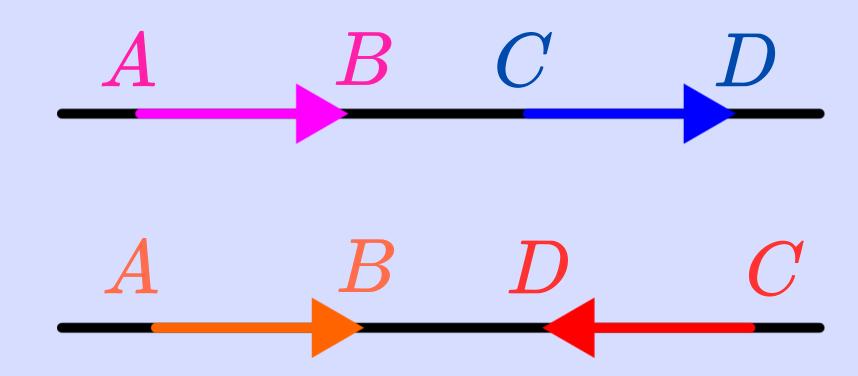


- **Direção e sentido:** a direção de um segmento é definida pela sua reta suporte
 - Dois segmentos orientados não nulos têm a mesma direção se suas retas suportes são paralelas

Só se pode comparar o sentido de dois segmentos orientados se eles tem a **mesma** direção

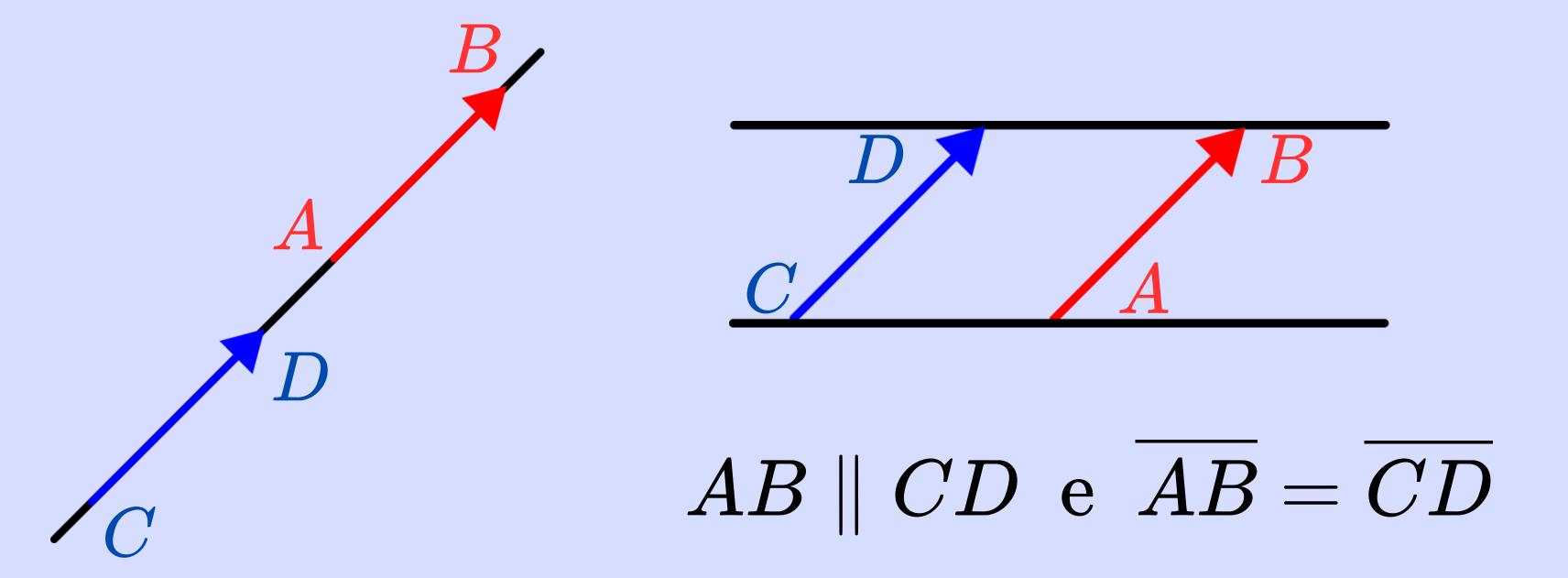
- Direção e sentido: a direção de um segmento é definida pela sua reta suporte
 - Dois segmentos orientados não nulos têm a mesma direção se suas retas suportes são paralelas

Dois segmentos orientados opostos têm a mesma direção e sentidos contrários



Segmentos equipolentes

 Dois segmentos orientados são equipolentes quando têm a mesma direção, o mesmo sentido e o mesmo comprimento.



Segmentos equipolentes

- Dois segmentos orientados são equipolentes quando têm a mesma direção, o mesmo sentido e o mesmo comprimento.
 - Dois segmentos nulos são sempre equipolentes
 - A equipolência dos segmentos é representada por

$$AB \sim CD$$

Segmentos equipolentes

Propriedades

 \circ Simétrica: $AB \sim CD \longrightarrow CD \sim AB$

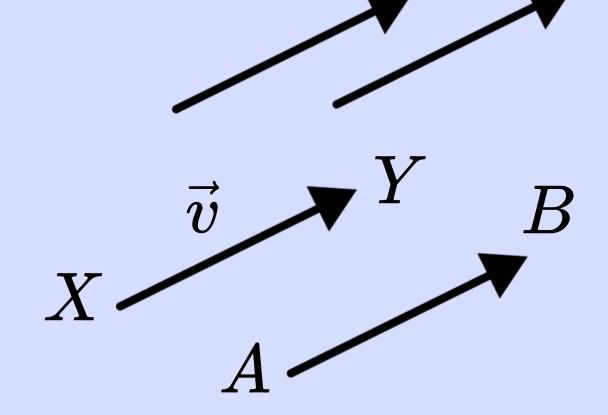
 \circ Transitiva: $AB \sim CD$ e $CD \sim EF \longrightarrow AB \sim EF$

 $^{\circ}$ Dado um segmento orientado AB e um ponto C , existe um único ponto D tal que $AB \sim CD$

- **Definição:** O conjunto de todos os segmentos orientados equipolentes a um segmento orientado é denominado **vetor.**
 - lacktriangle Este conjunto é indicado por $ec{v}$ e definido por:

$$\vec{v} = \{XY/XY \sim AB\}$$

onde AB é um segmento qualquer do conjunto



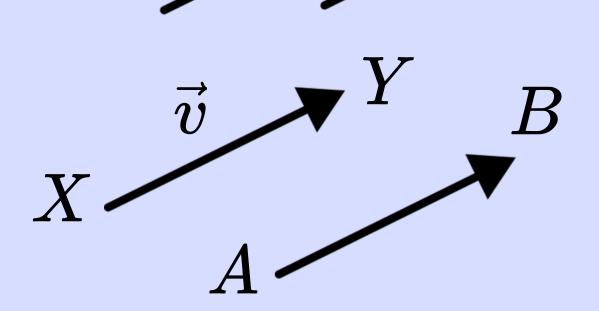
- **Definição:** O conjunto de todos os segmentos orientados equipolentes a um segmento orientado é denominado **vetor.**
 - lacktriangle Este conjunto é indicado por $ec{v}$ e definido por:

$$\vec{v} = \{XY/XY \sim AB\}$$

onde AB é um segmento qualquer do conjunto

O vetor determinado porAB é indicado por:

$$\overrightarrow{AB}, \quad B-A, \quad \vec{v}$$

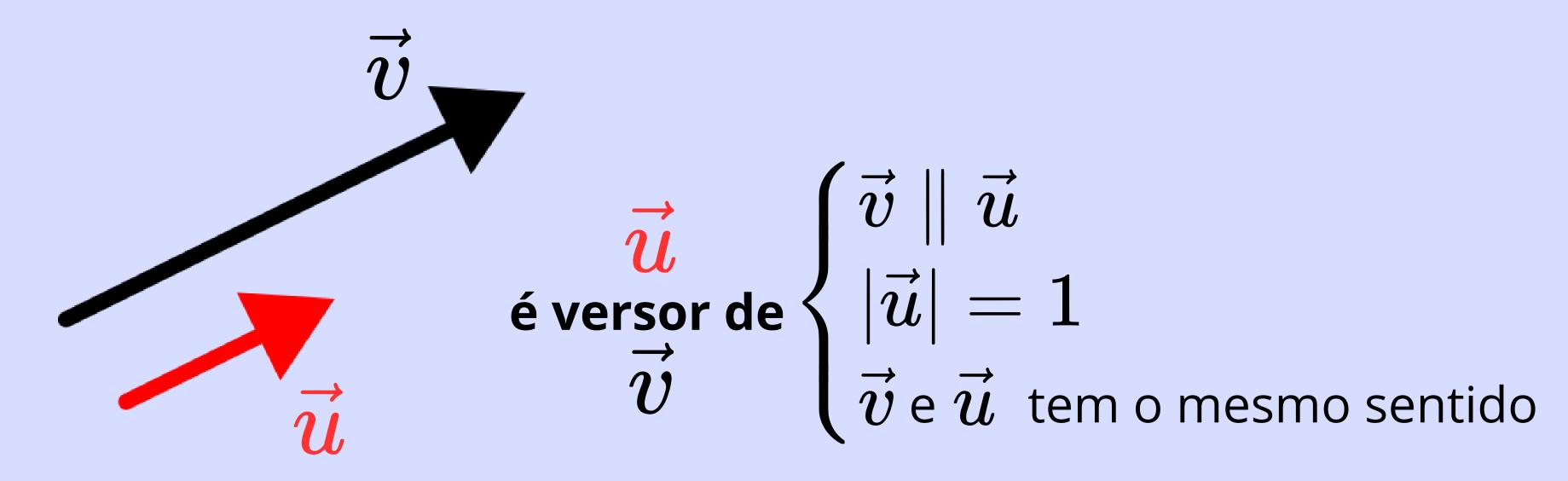


- Um mesmo vetor é determinado por uma infinidade de segmentos orientados, os representantes desse vetor, e todos são equipolentes entre si.
- As características de um vetor (módulo, direção e sentido) são as mesmas de qualquer um de seus representantes.
 - lacktriangle Módulo do vetor: $|ec{v}|$

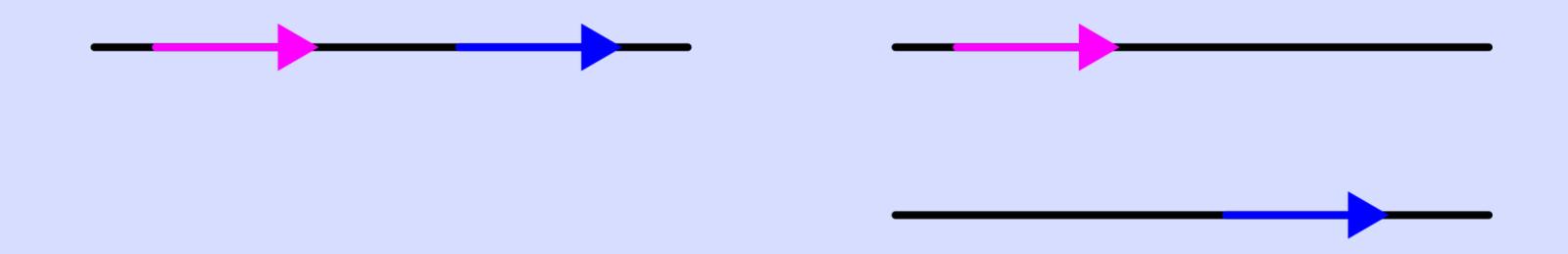
 $oldsymbol{\cdot}$ **Vetores iguais:** Dois vetores $ec{u}$ e $ec{v}$ são iguais se, e somente se, $ec{u}\simec{v}$

- **Vetor nulo:** os segmentos nulos são todos equipolentes entre si, logo, determinam um **único** vetor, o vetor nulo 0
- ullet Vetores opostos: $ec{v}=\overrightarrow{AB}\longrightarrow -ec{v}=-\overrightarrow{AB}=\overrightarrow{BA}$
- ullet Vetor unitário $|ec{u}|=1$

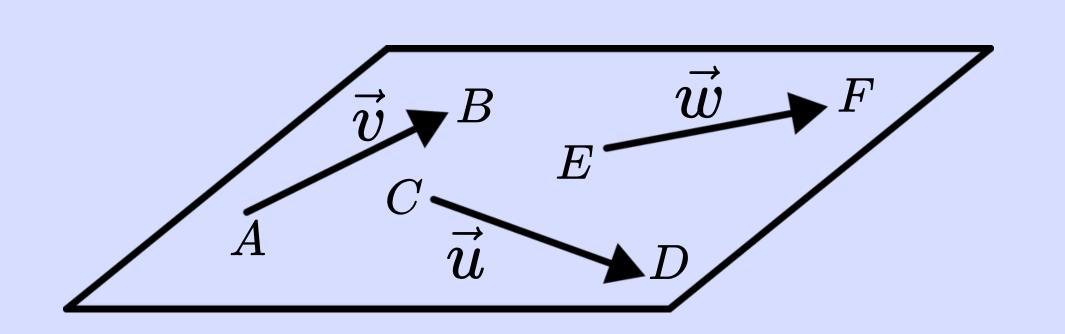
• Versor: o versor de um vetor não nulo é o vetor unitário de mesma direção e mesmo sentido do vetor.



 Vetores colineares: dois vetores são colineares se tiverem a mesma direção (retas suporte paralelas)

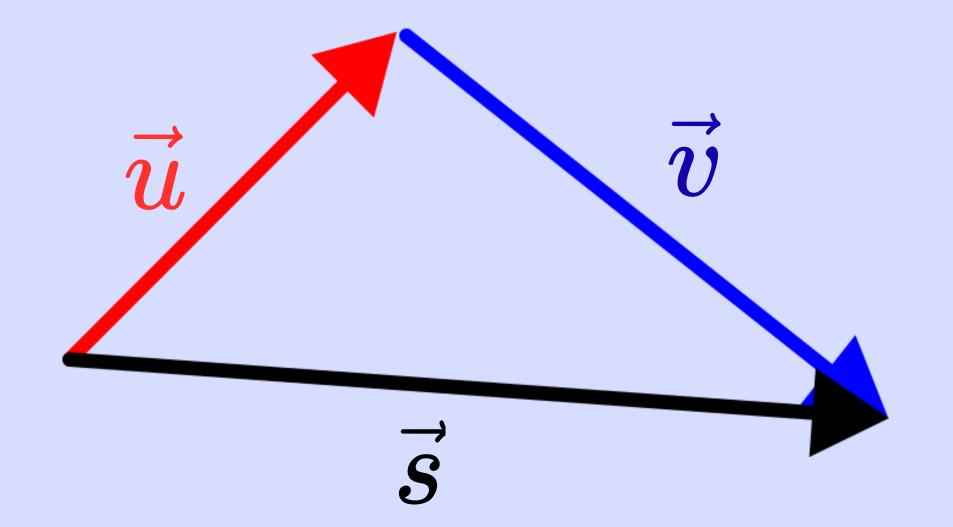


• **Vetores coplanares:** três vetores distintos são **coplanares** se todos possuem representantes pertencentes ao mesmo plano.



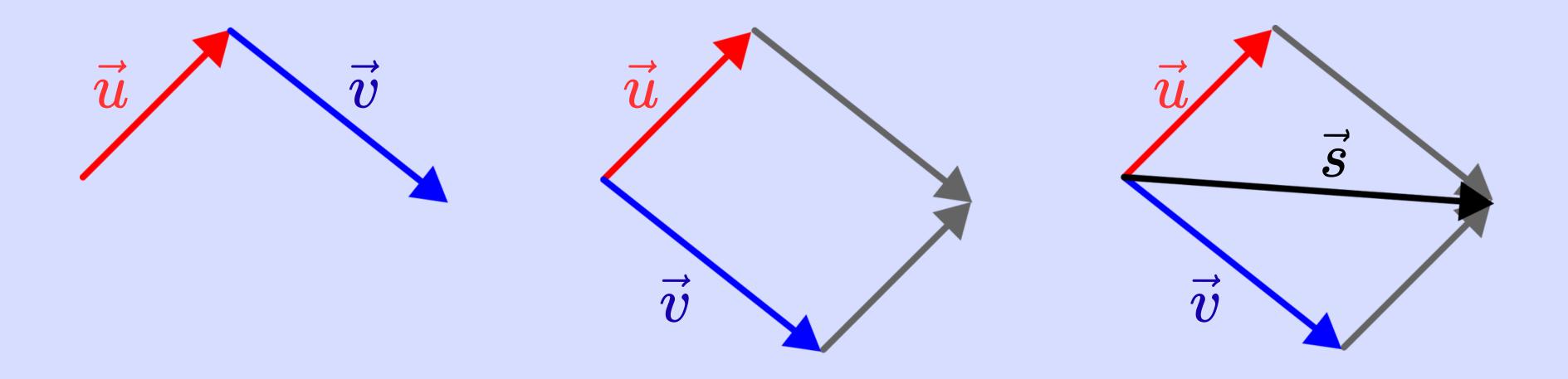
Dois vetores quaisquer são sempre coplanares

 Adição de vetores: dois vetores representados pelos segmentos AB e BC têm sua soma representada pelo segmento definido pelos pontos A e C



$$\vec{s} = \vec{u} + \vec{v}$$

• Adição de vetores: de forma prática, colocamos os vetores na mesma origem e utilizamos o método do paralelogramo



• Adição de vetores: de forma prática, colocamos os vetores na mesma origem e utilizamos o método do paralelogramo



Adição de vetores - Propriedades

$$lacktriangle$$
 Comutativa: $ec{u} + ec{v} = ec{v} + ec{u}$

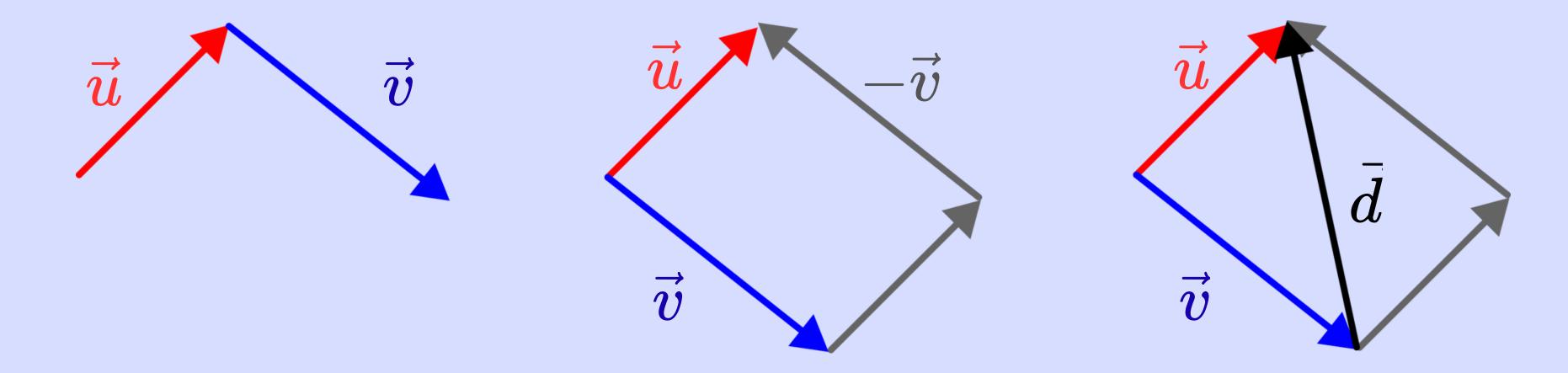
• Associativa:
$$(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$$

• Vetor nulo:
$$\vec{v} + \vec{0} = \vec{0} + \vec{v} = \vec{v}$$

• Vetor oposto:
$$\vec{v} + (-\vec{v}) = -\vec{v} + \vec{v} = \vec{0}$$

• Diferença de vetores

$$\vec{d} = \vec{u} - \vec{v} = \vec{u} + (-\vec{v})$$



 Multiplicação por um número real: dado um vetor não nulo e um número real k, também não nulo, chama-se produto do vetor pelo número real o vetor

$$ec{p}=kec{v}$$

- \circ Módulo: $|ec{p}| = |kec{v}| = |k||ec{v}|$
- \circ **Direção:** não é alterada $\ ec{p} \parallel ec{v} \$
- Sentido: o mesmo se k>0, o oposto se k<0

- Multiplicação por um número real:
 - lacksquare Se k=0 ou $ec{v}=ec{0}$, temos $kec{v}=ec{0}$
 - Dados dois vetores colineares, sempre existe um número real tal que

$$ec{u}=kec{v}$$

O versos de um vetor não nulo é o vetor unitário

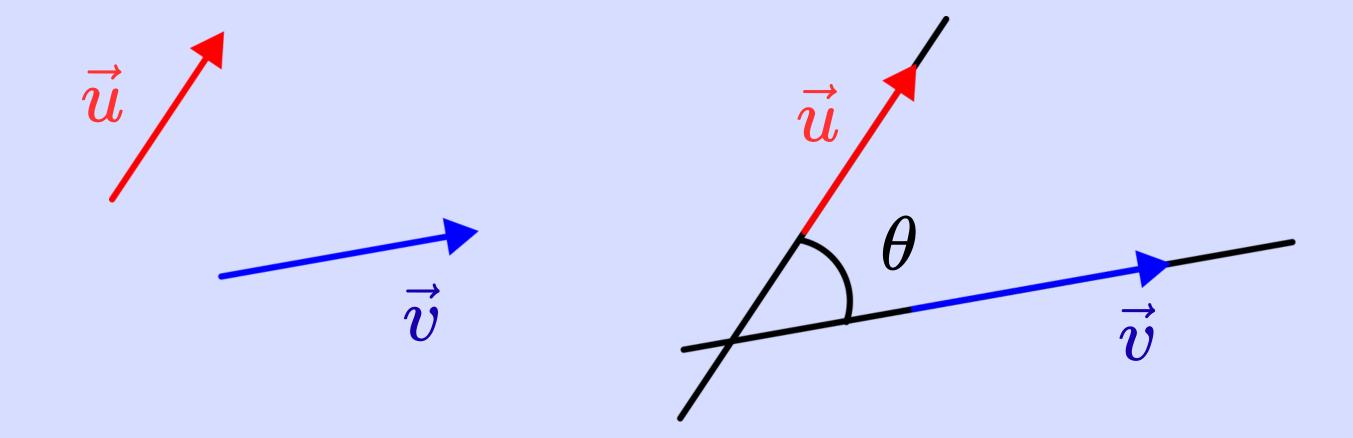
$$ec{u}=rac{ec{v}}{|ec{v}|}$$

• Multiplicação por um número real - Propriedades

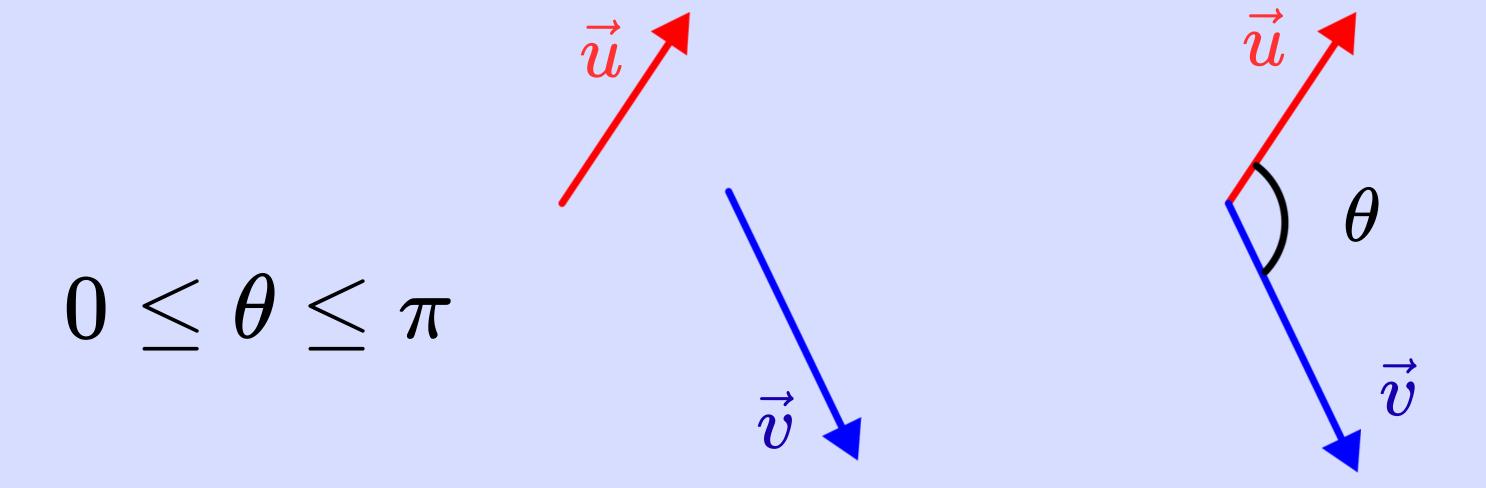
$$lacktriangledown$$
 Associativa: $a(bec{v})=(ab)ec{v}$

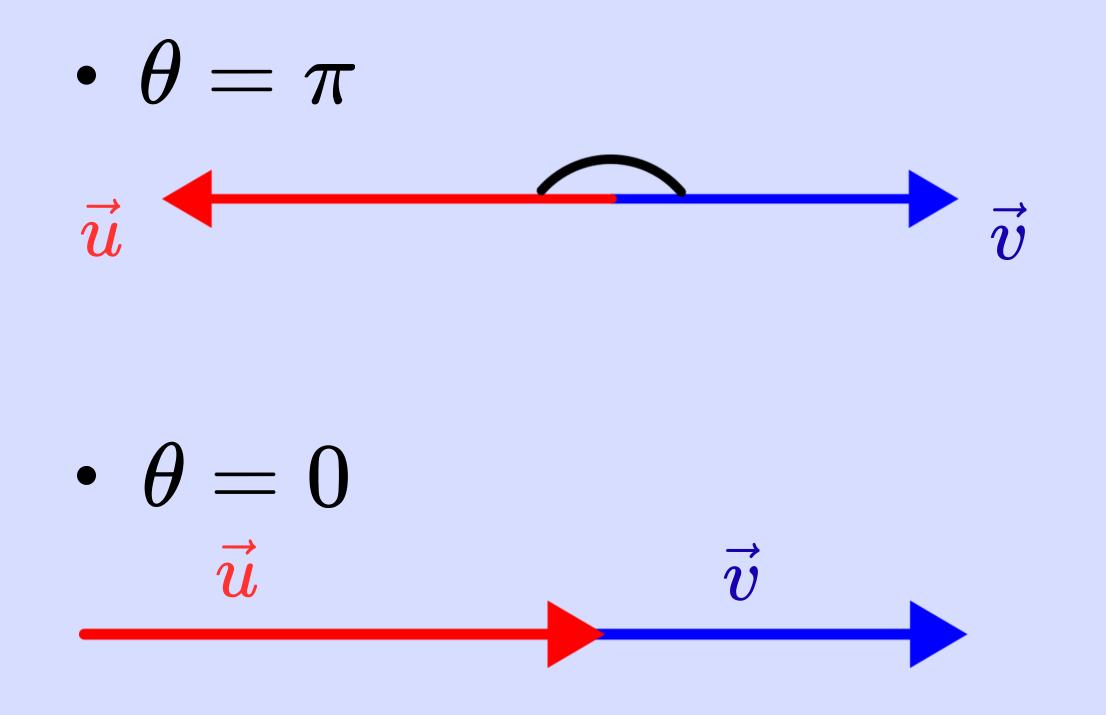
- lacktriangle Distributiva 1: $(a+b)\vec{v}=a\vec{v}+b\vec{v}$
- lacktriangle Distributiva 2: $a(\vec{u}+\vec{v})=a\vec{u}+a\vec{v}$
- Identidade: $1\vec{v} = \vec{v}$

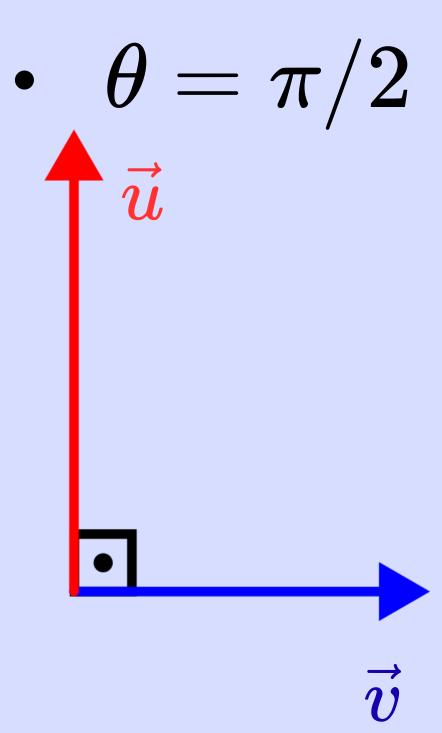
 O ângulo entre dois vetores não nulos é o ângulo formado pelas semi retas de mesma direção dos vetores



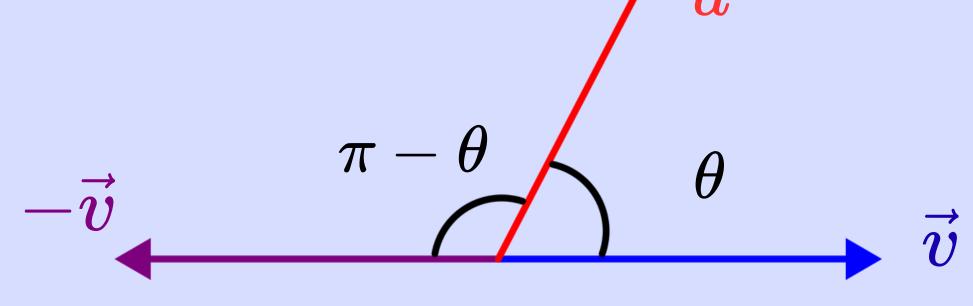
 O ângulo entre dois vetores não nulos é o ângulo formado pelas semi retas de mesma direção dos vetores







- O vetor nulo é considerado ortogonal a qualquer vetor.
- ullet Se $ec{u}$ é ortogonal a $ec{v}$ e $m\in\mathbb{R}$, então $ec{u}$ é ortogonal a $mec{v}$
- O ângulo formado pelos vetores \vec{u} e $-\vec{v}$ é o suplemento do ângulo de \vec{u} e \vec{v} .



Exemplo

• Dados os vetores \vec{u} , \vec{v} e \vec{w} de acordo com a figura, construir o vetor

$$2ec{u}-3ec{v}+rac{1}{2}ec{w}=ec{s}$$

