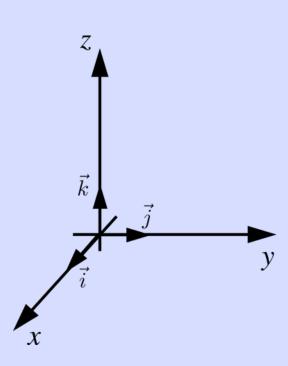
https://mmugnaine.github.io/eel/teaching/GA

• CAMARGO, Ivan; BOULOS, Paulo. **Geometria Analítica: um tratamento vetorial**. São Paulo: Prentice Hall, 2005.



• Sejam $\vec{v_1}, \vec{v_2}, \ldots, \vec{v_n}$ vetores no espaço euclidiano, com $n \geq 1$, e os números reais $\alpha_1, \alpha_2, \ldots, \alpha_n$. Chama-se **combinação linear** dos vetores $\vec{v_1}, \vec{v_2}, \ldots, \vec{v_n}$ com coeficientes $\alpha_1, \alpha_2, \ldots, \alpha_n$ o vetor

$$\vec{u} = \alpha_1 \vec{v_1} + \alpha_2 \vec{v_2} + \ldots + \alpha_n \vec{v_n}$$

• Sejam $\vec{v_1}, \vec{v_2}, \ldots, \vec{v_n}$ vetores no espaço euclidiano, com $n \geq 1$, e os números reais $\alpha_1, \alpha_2, \ldots, \alpha_n$. Chama-se **combinação linear** dos vetores $\vec{v_1}, \vec{v_2}, \ldots, \vec{v_n}$ com coeficientes $\alpha_1, \alpha_2, \ldots, \alpha_n$ o vetor

$$\vec{u} = \alpha_1 \vec{v_1} + \alpha_2 \vec{v_2} + \ldots + \alpha_n \vec{v_n}$$

Também podemos dizer que \vec{u} é gerado pelos vetores $\vec{v_1}, \ldots, \vec{v_n}$.

• A partir da definição, temos que o **vetor nulo** é gerado por $\vec{v_1}, \vec{v_2}, \dots, \vec{v_n}$ quaisquer que sejam estes vetores. De fato,

$$\vec{0} = 0\vec{v_1} + 0\vec{v_2} + \ldots + 0\vec{v_n}$$

• **Proposição 1:** Uma sequência $(\vec{v_1},\vec{v_2},\ldots,\vec{v_n})$, com $n\geq 2$, é **linearmente dependente (LD)** se e somente se algum vetor da sequência for gerado pelos demais

• **Corolário 1:** a sequência (\vec{u}, \vec{v}) é **LD** se, e somente se, existe um número real α tal que $\vec{u}=\alpha\vec{v}$, ou existe β real tal que $\vec{v}=\beta\vec{u}$. Além disso, se $\vec{u}\neq 0, \vec{v}\neq 0$, existe $\alpha\neq 0, \beta\neq 0$ tal que $\alpha=1/\beta$

• Proposição 2: Uma sequência $(\vec{v_1},\vec{v_2},\ldots,\vec{v_n})$, de vetores é linearmente independente se e somente se a equação

$$x_1\vec{v_1} + x_2\vec{v_2} + \ldots + x_n\vec{v_n} = \vec{0}$$

nas incógnitas x_1, x_2, \ldots, x_n **apenas** admite a solução trivial, isto é,

$$x_1 = x_2 = \ldots = x_n = 0$$

• Corolário 2: Se (\vec{u},\vec{v}) é LI e $(\vec{u},\vec{v},\vec{w})$ é LD, então \vec{w} é combinação linear de \vec{u} e \vec{v} , isto é

$$\vec{w} = \alpha \vec{u} + \beta \vec{v}$$

• Corolário 3: Se $(\vec{u}, \vec{v}, \vec{w})$ é LI, então todo vetor no espaço é gerado por uma combinação linear destes vetores, isto é

$$ec{x} = lpha ec{u} + eta ec{v} + \gamma ec{w}$$

• Exemplo: As bases canônicas são LI.

• Exemplo: Os vetores abaixo são linearmente dependentes?

$$\{(1,-1),(1,0),(1,1)\}$$

- **Definição:** Chama-se **base** de um espaço tridimensional qualquer tripla ordenada de vetores deste espaço linearmente independentes.
 - \circ Em outras palavras, um conjunto $(\vec{e_1},\vec{e_2},\vec{e_3})$ de vetores de um espaço será base desse espaço se
 - $\{\vec{e_1},\vec{e_2},\vec{e_3}\}$ é linearmente independente
 - Todo vetor no espaço é uma combinação linear dos vetores da base

• Sendo assim, temos que para todo vetor pertencente ao espaço, existem escalares $\,a_1,a_2,a_3\,$, tais que

$$ec{v} = ec{a_1} ec{e_1} + ec{a_2} ec{e_2} + ec{a_3} ec{e_3} \ ec{v} = (a_1, a_2, a_3)$$

- Conjunto de vetores **LD não** formam base
 - Para identificar se vetores são LD ou LI, usamos as seguintes proposições

Proposição 1: Os vetores $ec u=(x_1,y_1,z_1)$ e $ec v=(x_2,y_2,z_2)$ são **LD** se e somente se as componentes x_1,y_1,z_1 são proporcionais a x_2,y_2,z_2

Proposição 2: Os vetores $\vec{u}=(x_1,y_1,z_1)$ e $\vec{v}=(x_2,y_2,z_2)$ e $\vec{w}=(x_3,y_3,z_3)$ são **LI** se e somente se

Exemplo 1: Verificar se os vetores são LI ou LD

•
$$\vec{u} = (1, 2, 3)$$
 e $\vec{v} = (2, 1, 1)$

•
$$\vec{u} = (1,7,1)$$
 e $\vec{v} = \left(\frac{1}{2}, \frac{7}{2}, \frac{1}{2}\right)$

•
$$\vec{u} = (1, -1, 2), \ \vec{v} = (0, 1, 3) \ \text{e} \ \vec{w} = (4, -3, 11)$$

Exemplo 2: Seja uma base $E=(ec{e_1},ec{e_2},ec{e_3})$, mostrar que os vetores

$$ec{f}_1 = 2ec{e}_1 - ec{e}_2 \ ec{f}_2 = ec{e}_1 - ec{e}_2 + 2ec{e}_3 \ ec{f}_3 = ec{e}_1 + 2ec{e}_3 \ ec{f}_3 = ec{e}_1 + 2ec{e}_3$$

formam uma base.

Exemplo 3: Calcular as coordenadas do vetor $ec{v}=(1,1,1)$, na base

$$ec{f}_1 = 2ec{e}_1 - ec{e}_2 \ ec{f}_2 = ec{e}_1 - ec{e}_2 + 2ec{e}_3 \ ec{f}_3 = ec{e}_1 + 2ec{e}_2 + 2ec{e}_3 \ ec{f}_3 = ec{e}_1 + 2ec{e}_3 + 2ec{e}_3 \ ec{f}_3 = ec{e}_1 + 2ec{e}_3 + 2ec{$$

Exemplo 3: Calcular as coordenadas do vetor $ec{v}=(1,1,1)$, na base

$$ec{f}_1 = 2ec{e_1} - ec{e_2} \ ec{f}_2 = ec{e_1} - ec{e_2} + 2ec{e_3} \ ec{f}_3 = ec{e_1} + 2ec{e_3}$$

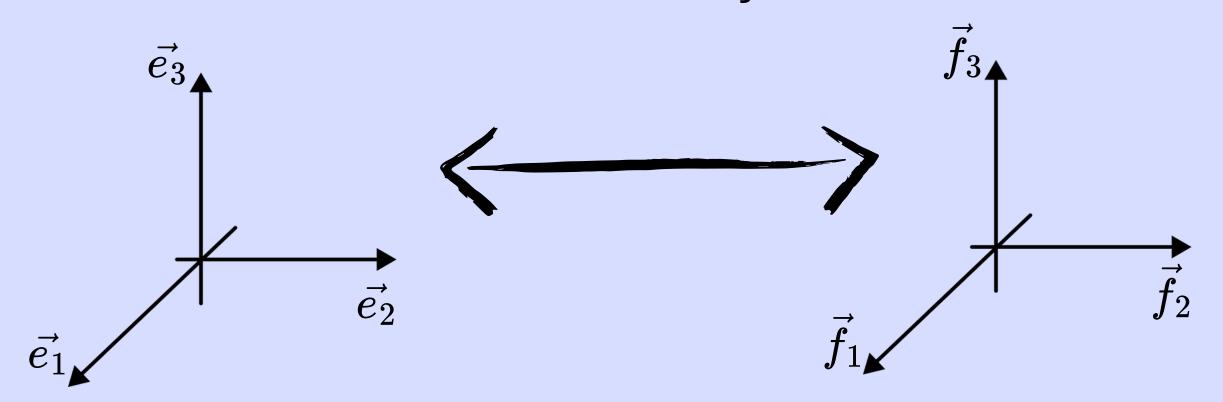
$$ec{v} = rac{1}{4}ec{f}_1 - rac{5}{4}ec{f}_2 + rac{7}{4}ec{f}_3$$

Exemplo 4: Quais são as coordenadas de $ec{v}=(1,0,0)$ em relação a base formada pelos vetores

$$ec{eta}_1 = (1,1,1) \ ec{eta}_2 = (-1,1,0) \ ec{eta}_3 = (1,0,-1)$$

Cada vetor é combinação linear da base canônica

- A escolha de uma base conveniente ajuda a resolver um problema, simplificando-o.
 - Pode ocorrer de termos um vetor definido em uma base diferente da base conveniente.
 - Precisamos saber uma relação entre as duas bases



Definição: Dadas as bases $E=(\vec{e_1},\vec{e_2},\vec{e_3})$ e $F=(\vec{f_1},\vec{f_2},\vec{f_3})$, podemos escrever

$$ec{f}_1 = a_{11}ec{e}_1 + a_{21}ec{e}_2 + a_{31}ec{e}_3$$
 $ec{f}_2 = a_{12}ec{e}_1 + a_{22}ec{e}_2 + a_{32}ec{e}_3$
 $ec{f}_3 = a_{13}ec{e}_1 + a_{23}ec{e}_2 + a_{33}ec{e}_3$

Temos que a matriz mudança de base de E para F é

$$M = egin{pmatrix} a_{11} & a_{21} & a_{31} \ a_{12} & a_{22} & a_{32} \ a_{13} & a_{23} & a_{33} \end{pmatrix}$$

Exemplo: Sendo E e F bases do espaço, com

$$ec{f}_1 = ec{e}_1 - ec{e}_2, \qquad ec{f}_2 = ec{e}_3, \qquad ec{f}_3 = ec{e}_2 + ec{e}_3$$

encontrar a matriz mudança de base de E para F.

Exemplo: Sendo E e F bases do espaço, com

$$ec{f}_1 = ec{e}_1 - ec{e}_2, \qquad ec{f}_2 = ec{e}_3, \qquad ec{f}_3 = ec{e}_2 + ec{e}_3$$

encontrar a matriz mudança de base de E para F.

$$M = egin{pmatrix} 1 & 0 & 0 \ -1 & 0 & 1 \ 0 & 1 & 1 \end{pmatrix}$$

Exemplo: A matriz de mudança de base da base E para a base F é

$$M = egin{pmatrix} 1 & 0 & 1 \ 0 & 1 & 0 \ 1 & 0 & -1 \end{pmatrix}$$

Quais os elementos de F em termo da base E?

Exemplo: A matriz de mudança de base da base E para a base F é

$$M = egin{pmatrix} 1 & 0 & 1 \ 0 & 1 & 0 \ 1 & 0 & -1 \end{pmatrix}$$

Quais os elementos de F em termo da base E?

$$ec{f}_1 = ec{e_1} + ec{e_3}, \qquad ec{f}_2 = ec{e_2}, \qquad ec{f}_3 = ec{e_1} - ec{e_3}$$

Proposição: Sejam $E=(\vec{e_1},\vec{e_2},\vec{e_3})$, $F=(\vec{f_1},\vec{f_2},\vec{f_3})$ e $G=(\vec{g_1},\vec{g_2},\vec{g_3})$. Então,

$$E \stackrel{M}{\longrightarrow} F$$
 $F \stackrel{N}{\longrightarrow} G$

$$E \stackrel{MN}{\longrightarrow} G$$

Mudança de base e matriz inversa

Proposição: Se $E \stackrel{M}{\longrightarrow} F$, então $F \stackrel{M^{-1}}{\longrightarrow} E$.