

LOB 1036 - Geometria Analítica

Lista de exercícios 1 - Parte 1 2º semestre de 2025

1. O paralelogramo ABCD é determinado pelos vetores \overrightarrow{AB} e \overrightarrow{AD} , sendo M e N pontos médios dos lados DC e AB, respectivamente, calcular

a)
$$\overrightarrow{AD} + \overrightarrow{AB}$$

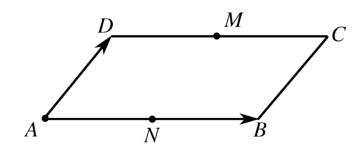
b)
$$\overrightarrow{BA} + \overrightarrow{DA}$$

c)
$$\overrightarrow{AC} - \overrightarrow{BC}$$

d)
$$\overrightarrow{AN} + \overrightarrow{BC}$$

e)
$$\overrightarrow{MD} + \overrightarrow{MB}$$

f)
$$\overrightarrow{BM} - \frac{1}{2}\overrightarrow{DC}$$



2. Dados os vetores $\vec{u} = (3, -1)$ e $\vec{v} = (-1, 2)$, determinar o vetor \vec{w} tal que

a)
$$4(\vec{u} - \vec{v}) + \frac{1}{3}\vec{w} = 2\vec{u} - \vec{w}$$

b)
$$3\vec{w} - (2\vec{v} - \vec{u}) = 2(4\vec{w} - 3\vec{u})$$

3. Dados os vetores $\vec{u} = (3, -4)$ e $\vec{v} = \left(-\frac{9}{4}, 3\right)$, verificar se existem números a e b tais que $\vec{u} = a\vec{v}$ e $\vec{v} = b\vec{u}$.

4. Dados os pontos A(-1,2,3) e B(4,-2,0), determinar o ponto P tal que $\overrightarrow{AP} = 3\overrightarrow{AB}$.

5. Determinar o vetor \vec{v} sabendo que $(3,7,1) + 2\vec{v} = (6,10,4) - \vec{v}$.

6. Encontrar os números a_1 e a_2 tais que $\vec{w} = a_1\vec{v_1} + a_2\vec{v_2}$, sendo $\vec{v_1} = (1, -2, 1)$, $\vec{v_2} = (2, 0, -4)$ e $\vec{w} = (-4, -4, 14)$.

7. Determinar a e b de modo que os vetores $\vec{u} = (4, 1, -3)$ e $\vec{v} = (6, a, b)$ sejam paralelos.

8. Verificar se são colineares os pontos:

a)
$$A(-1,-5,0)$$
, $B(2,1,3)$ e $C(-2,-7,-1)$ b) $A(2,1,-1)$, $B(3,-1,0)$ e $C(1,0,4)$

9. Mostrar que os pontos A(4,0,1), B(5,1,3), C(3,2,5) e D(2,1,3) são vértices de um paralelogramo.

- **10.** Determinar o simétrico do ponto P(3,1,-2) em relação ao ponto A(-1,0,-3).
- **11.** Provar que se $(\vec{u}, \vec{v}, \vec{w})$ é LI, então $(\vec{u} + \vec{v} + \vec{w}, \vec{u} \vec{v}, 3\vec{v})$ também é LI, o mesmo sucedendo com $(\vec{u} + \vec{v}, \vec{u} + \vec{w}, \vec{v} + \vec{w})$.
- **12.** Prove que $(\vec{u} 2\vec{v} + \vec{w}, 2\vec{u} + \vec{v} + 3\vec{w}, \vec{u} + 8\vec{v} + 3\vec{w})$ é LD quaisquer que sejam os vetores \vec{u}, \vec{v} e \vec{w} .
- 13. O vetor $\vec{u} = (1, -1, 3)$ pode ser escrito como uma combinação linear de $\vec{v} = (-1, 1, 0)$ e $\vec{w} = \left(2, 3, \frac{1}{3}\right)$?
- **14.** Ache m de modo que $\vec{u}=(1,2,2)$ seja combinação linear de $\vec{v}=(m-1,1,m-2)$ e $\vec{w}=(m+1,m-1,2)$. Também determine m para que $(\vec{u},\vec{v},\vec{w})$ seja LD.
- **15.** Ache *m* para que sejam LD

a)
$$\vec{u} = (m, 1, m)$$
 e $\vec{v} = (1, m, 1)$

b)
$$\vec{u} = (m, 1, m+1), \vec{v} = (1, 2, m) \text{ e } \vec{w} = (1, 1, 1)$$

c)
$$\vec{u} = (m, 1, m+1), \vec{v} = (0, 1, m), \vec{w} = (0, m, 2m)$$

- **16.** Sejam as bases $\beta = \{(1,0),(0,1)\}, \beta_1 = \{(-1,1),(1,1)\}, \beta_2 = \{(3,1),(3,-1)\} \in \beta_3 = \{(2,0),(0,2)\}.$
 - a) Quais são as coordenadas do vetor $\vec{v} = (3, -2)$ em relação a cada uma das bases?
 - b) Ache as matrizes de mudança de base: $\beta_1 \xrightarrow{M} \beta$, $\beta \xrightarrow{N} \beta_1$, $\beta \xrightarrow{P} \beta_2$ e $\beta \xrightarrow{Q} \beta_3$.