

LOB 1036 - Geometria Analítica

Lista de exercícios 1 - Parte 2 2º semestre de 2025

- **1.** Provar que $|\vec{u} + \vec{v}|^2 = |\vec{u}|^2 + 2\vec{u} \cdot \vec{v} + |\vec{v}|^2$.
- **2.** Provar que $(\vec{u} + \vec{v}) \cdot (\vec{u} \vec{v}) = |\vec{u}|^2 |\vec{v}|^2$.
- 3. Os ângulos diretores de um vetor são α , 45° e 60° . Determinar α .
- **4.** Provar as propriedades abaixo.

a)
$$\vec{u} \times \vec{u} = \vec{0}$$

b)
$$\vec{u} \times \vec{v} = -\vec{v} \times \vec{u}$$

c)
$$(m\vec{u}) \times \vec{v} = m(\vec{u} \times \vec{v})$$

d)
$$|\vec{u} \times \vec{v}|^2 = |\vec{u}|^2 |\vec{v}|^2 - (\vec{u} \cdot \vec{v})^2$$

- **5.** Determinar um vetor unitário simultaneamente ortogonal aos vetores $\vec{u} = (2, -6, 3)$ e $\vec{v} = (4, 3, 1)$.
- **6.** Sejam os vetores $\vec{u} = (3, 1, -1)$ e $\vec{v} = (a, 0, 2)$. Calcular o valor de a para que a área do paralelogramo determinado por \vec{u} e \vec{v} seja igual a $2\sqrt{6}$ u.a.
- 7. Calcular a área do triângulo de vértices A(1,-2,1), B(2,-1,4) e C(-1,-2,3).
- **8.** Dados os vetores $\vec{u}=(1,a,-2a-1)$, $\vec{v}=(a,a,-1)$ e $\vec{w}=(a,-1,1)$, determinar a de modo que $\vec{u}\cdot\vec{v}=(\vec{u}+\vec{v})\cdot\vec{w}$.
- **9.** Dados os pontos A(-1,0,2), B(-4,1,1) e C(0,1,3), determinar o vetor \vec{x} tal que $2\vec{x} \overrightarrow{AB} = \vec{x} + (\overrightarrow{BC} \cdot \overrightarrow{AB}) \overrightarrow{AC}$.
- **10.** Determinar o vetor \vec{v} sabendo que $(3,7,1) + 2\vec{v} = (6,10,4) \vec{v}$.
- **11.** Dados os pontos A(1,2,3), B(-6,-2,3) e C(1,2,1), determinar o versor do vetor $3\overrightarrow{BA} 2\overrightarrow{BC}$.
- **12.** Determinar o valor de *n* para que o vetor $\vec{v} = \left(n, \frac{2}{5}, \frac{4}{5}\right)$ seja unitário.
- **13.** Dados os pontos A(1,0,-1), B(4,2,1) e C(1,2,0), determinar o valor de m para que $|\vec{v}|=7$, sendo $\vec{v}=\overrightarrow{mAC}+\overrightarrow{BC}$.

- **14.** Calcular o perímetro do triângulo de vértices A(0,1,2), B(-1,0,-1) e C(2,-1,0).
- **15.** Determinar os ângulos do triângulo de vértices A(2,1,3), B(1,0,-1) e C(-1,2,1).
- **16.** Sabendo que o ângulo entre os vetores $\vec{u} = (2, 1, -1)$ e $\vec{v} = (1, -1, m+2)$ é $\frac{\pi}{3}$, determinar m.
- 17. Determinar o vetor \vec{v} , paralelo ao vetor $\vec{u} = (1, -1, 2)$, tal que $\vec{v} \cdot \vec{u} = -18$.
- **18.** Determinar o vetor \vec{v} , colinear ao vetor $\vec{u} = (-4, 2, 6)$, tal que $\vec{v} \cdot \vec{w} = -12$, sendo $\vec{w} = (-1, 4, 2)$.
- 19. Provar que os pontos A(5,1,5), B(4,3,2) e C(-3,-2,1) são vértices de um triângulo retângulo.
- **20.** Verificar se existe ângulo reto no triângulo ABC, sendo A(2,1,3), B(3,3,5) e C(0,4,1).
- **21.** Os ângulos diretores de um vetor podem ser de 45° , 60° e 90° ? Justificar.
- 22. Os ângulos diretores de um vetor são 45° , 60° e γ . Determinar γ .
- **23.** Determinar o vetor \vec{v} sabendo que $|\vec{v}| = 5$, \vec{v} é ortogonal ao eixo Oz, $\vec{v} \cdot \vec{w} = 6$ e $\vec{w} = 2\vec{j} + 3\vec{k}$.
- **24.** Determinar um vetor unitário ortogonal ao vetor $\vec{v} = (2, -1, 1)$.
- **25.** Determinar um vetor de módulo 5 paralelo ao vetor $\vec{v} = (1, -1, 2)$.
- **26.** Determinar o vetor \vec{v} , ortogonal ao eixo Oz, que satisfaz as condições $\vec{v} \cdot \vec{v_1} = 10$ e $\vec{v} \cdot \vec{v_2} = -5$, sendo $\vec{v_1} = (2,3,-1)$ e $\vec{v_2} = (1,-1,2)$.
- **27.** Mostrar que, se \vec{u} é ortogonal a \vec{v} e \vec{w} , \vec{u} também é ortogonal a $\vec{v} + \vec{w}$.
- **28.** O vetor \vec{v} é ortogonal aos vetores $\vec{a} = (1,2,0)$ e $\vec{b} = (1,4,3)$ e forma ângulo agudo com o eixo dos x. Determinar \vec{v} , sabendo que $|\vec{v}| = 14$.
- **29.** Determinar um vetor simultaneamente ortogonal aos vetores $2\vec{a} + \vec{b}$ e $\vec{b} \vec{a}$, sendo $\vec{a} = (3, -1, -2)$ e $\vec{b} = (1, 0, -3)$.
- **30.** Mostrar que o quadrilátero cujos vértices são os pontos A(1,-2,3), B(4,3,-1), C(5,7,-3) e D(2,2,1) é um paralelogramo e calcular sua área.
- **31.** Calcular a área do paralelogramo que tem vértice no ponto A(3,2,1) e uma diagonal de extremidades B(1,1,-1) e C(0,1,2).
- **32.** Determinar \vec{v} tal que \vec{v} seja ortogonal ao eixo dos y e $\vec{u} = \vec{v} \times \vec{w}$, sendo $\vec{u} = (1, 1, -1)$ e $\vec{w} = (2, -1, 1)$.
- **33.** Sendo \vec{u} e \vec{v} vetores do espaço, com $\vec{v} \neq \vec{0}$:
 - a) determinar o número real r tal que $\vec{u} r\vec{v}$ seja ortogonal a \vec{v}
 - b) mostrar que $(\vec{u} + \vec{v}) \times (\vec{u} \vec{v}) = 2\vec{v} \times \vec{u}$.

- **34.** Verificar se são coplanares os pontos:
 - a) A(1,1,1), B(-2,-1,-3), C(0,2,-2) e D(-1,0,-2)
 - b) $A(1,0,2), B(-1,0,3), C(2,4,1) \in D(-1,-2,2)$
 - c) A(2,1,3), B(3,2,4), C(-1,-1,-1) e D(0,1,-1)
- **35.** Para que valor de *m* os pontos A(m,1,2), B(2,-2,-3), C(5,-1,1) e D(3,-2,-2) são coplanares?
- **36.** Sejam os vetores $\vec{u}=(1,1,0)$, $\vec{v}=(2,0,1)$, $\vec{w}_1=3\vec{u}-2\vec{v}$, $\vec{w}_2=\vec{u}+3\vec{v}$ e $\vec{w}_3=\vec{i}+\vec{j}-2\vec{k}$. Determinar o volume do paralelepípedo definido por \vec{w}_1, \vec{w}_2 e \vec{w}_3 .
- **37.** Os vetores $\vec{a}=(2,-1,-3)$, $\vec{b}=(-1,1,-4)$ e $\vec{c}=(m+1,m,-1)$ determinam um paralelepípedo de volume 42. Calcule m.