

LOB 1036 - Geometria Analítica

Lista de exercícios 3 - Parte 1 2° semestre de 2025

4	A 1 1 1	. •	. 1	1 .		1 1	1	~	1 1
I.	Ache as coordenadas	cartesianas i	retangulares (os pontos c	cujas (coordenadas	polares s	sao c	iadas.

a)
$$(3,\pi)$$

b)
$$\left(\sqrt{2}, -\frac{3}{4}\pi\right)$$
 c) $\left(-4, \frac{2}{3}\pi\right)$ d) $\left(-1, \frac{7}{6}\pi\right)$

c)
$$\left(-4, \frac{2}{3}\pi\right)$$

d)
$$\left(-1, \frac{7}{6}\pi\right)$$

2. Ache um conjunto de coordenadas polares dos pontos cujas coordenadas cartesianas retangulares são dadas. Considere r > 0 e $0 < \theta < 2\pi$.

a)
$$(1,-1)$$

b)
$$(-\sqrt{3},1)$$

c)
$$(2,2)$$

d)
$$(-5,0)$$

3. Ache a equação polar do gráfico dadda a sua equação cartesiana.

a)
$$x^2 + y^2 = a^2$$

b)
$$v^2 = 4(x+1)$$

d)
$$(x^2 + y^2)^2 = 4(x^2 - y^2)$$

c)
$$x^2 = 6y - y^2$$

e)
$$x^3 + y^3 - 3axy = 0$$

4. Ache a equação cartesiana do gráfico tendo a sua equação polar.

a)
$$r^2 = 2 \text{ sen } (2\theta)$$

d)
$$r\cos\theta = -1$$

b)
$$r^2 = \cos \theta$$

e)
$$r = \frac{6}{2 - 3 \sec \theta}$$

c)
$$r^2 = \theta$$

por

5. Mostre que a distância entre o ponto
$$(r_1, \theta_1)$$
 e o ponto (r_2, θ_2) no sistema coordenado polar é dada por

$$d = \sqrt{r_1^2 - 2r_1r_2\cos(\theta_1 - \theta_2) + r_2^2}$$

6. Um ponto P é representado em um sistema de coordenadas (x_1, x_2, x_3) como P(2, 1, 3). Em outro sistema de coordenadas, o ponto é representado por $P(x'_1, x'_2, x'_3)$ onde x_2 foi rotacionado em direção a x_3 ao redor do eixo de x_1 por um ângulo de 30°. Encontre a matriz de rotação e determine $P(x_1', x_2', x_3')$.

7. Encontre a matriz de transformação que rotaciona o eixo x_3 de um sistema de coordenadas retangulares em 45° em direção a x_1 ao redor de x_2 .

8. A partir das equações paramétricas, determine as equações cartesianas.

a)
$$x = 1 + t$$
, $y = 1 - t$

d)
$$x = 1 + t^2$$
, $y = 3 - t$

b)
$$x = -1 + 2t$$
, $y = 2 + 4t$

e)
$$x = \sec t$$
, $y = \tan t$

c)
$$x = 1 - t^2$$
, $y = 2 + t^2$

f)
$$x = \sin t$$
, $y = \cos(2t)$

9. As equações paramétricas abaixo são iguais?

$$x = t + \frac{1}{t}, \quad y = t - \frac{1}{t}$$

$$x = e^t + e^{-t}, \quad y = e^t - e^{-t}$$