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Dynamical characterization of transport barriers in nontwist Hamiltonian systems
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The turnstile provides us a useful tool to describe the flux in twist Hamiltonian systems. Thus, its determination
allows us to find the areas where the trajectories flux through barriers. We show that the mechanism of the turnstile
can increase the flux in nontwist Hamiltonian systems. A model which captures the essence of these systems
is the standard nontwist map, introduced by del Castillo-Negrete and Morrison. For selected parameters of this
map, we show that chaotic trajectories entering in resonances zones can be explained by turnstiles formed by a
set of homoclinic points. We argue that for nontwist systems, if the heteroclinic points are sufficiently close, they
can connect twin-islands chains. This provides us a scenario where the trajectories can cross the resonance zones
and increase the flux. For these cases the escape basin boundaries are nontrivial, which demands the use of an
appropriate characterization. We applied the uncertainty exponent and the entropies of the escape basin boundary
in order to quantify the degree of unpredictability of the asymptotic trajectories.
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I. INTRODUCTION

One of the outstanding issues in the theory of Hamiltonian
dynamical systems is the study of transport, which aims to
characterize the motion of groups of trajectories from one
region of the phase space to another [1]. There is a plethora of
physical applications of transport in Hamiltonian systems, such
as celestial mechanics [2], chemical reactions [3], condensed
matter [4], plasma confinement [5], particle accelerators [6],
fluid advection [7,8], and mixing in granular media [9].

A description of transport is particularly difficult in non-
integrable Hamiltonian systems, due to the fact that there
are periodic, quasiperiodic, and chaotic orbits mixed together
in a nontrivial fashion [10]. In a seminal paper, MacKay
et al. reported that the dynamical mechanism underlying
transport in nonintegrable Hamiltonian systems is the partial
barriers formed by joining the gaps in invariant Cantor sets,
also known as cantori [11]. For area-preserving twist maps,
the Kolmogorov-Arnold-Moser (KAM) theorem warrants the
existence of invariant tori with sufficiently irrational rotation
numbers, as long as the perturbation is weak enough [12]. An
increase in the perturbation strength can destroy those irra-
tional tori, leaving there cantori as remnants of the destroyed
tori [13]. The cantori are the most robust transport barriers in
any region of the phase space.

Another dynamical feature that affects the transport in
nonintegrable Hamiltonian system is the presence of partial
barriers bounding resonance zones. As is well known, the
Poincaré-Birkhoff theorem states that a rational torus will be
destroyed by a perturbation, leaving behind a set of elliptic
and hyperbolic points (centers and saddles, respectively) [14].
A resonance zone consists of periodic islands surrounding the
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centers, whose boundaries are formed from the stable and
unstable manifolds of the saddles [1]. The set formed by two
such contiguous lobes is named a turnstile, since it works like a
revolving door, permitting transport across the corresponding
barrier.

While most of the known results on transport assume that
the Hamiltonian system displays the twist condition, it is an
open question whether or not the above description would
apply to nontwist systems as well. In Ref. [1] Meiss considers
this one of the two key questions to be answered by future
work on this subject. On the other hand, nontwist systems
appear in various problems of physical interest, like toroidal
devices with reversed magnetic shear [15], traveling waves in
geophysical zonal flows [16,17], laser-plasma coupling [18],
the advection of a passive scalar by an incompressible shear
fluid flow [19], and the E × B drift motion of charged particles
in a magnetic field [17,20]. For systems like these it is important
to characterize the presence of internal transport barrier in order
to explain the cessation or reduction of transport.

In this work, we explore numerical diagnostics of transport
in chaotic area-preserving nontwist systems, in such a way as
to explain some features of the transport across internal partial
transport barriers. An example of the nontwist system, which
has been intensively studied in the past two decades, is the
standard nontwist map. We take this map as a paradigm for
the dynamical behavior of nontwist systems in general. For
this nontwist map we combine the numerical computation of
the transmissivity across the internal transport barrier with the
recently introduced concept of basin entropy to identify the
basin boundary of the escape regions related to transport across
the barrier [21].

We show that the turnstiles are indeed responsible for
increasing transport fluxes across transport barriers in nontwist
systems, just in the way that they do for twist ones. We also
characterize the unpredictability of the asymptotic state of
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the system, analyzing how the transmissivity of the barrier
is affected by the invariant manifold structure responsible for
the formation of turnstiles.

The paper is organized as follows: in Sec. II we introduce
the nontwist standard map and some of its basic properties. The
transmissivity of the internal transport barriers in this system is
discussed in Sec. III. The concepts of basin entropy and basin
boundary entropy are introduced in Sec. IV, with respect to the
escape basins related to the barrier transmissivity. Section V is
devoted to the interpretation of the numerical results in terms of
the turnstile mechanism, and how it can explain the increasing
of the transport flux due to trajectories crossing the resonance
zones. Our conclusions are found in the last section.

II. STANDARD NONTWIST MAP

A canonical mapping with the general form

Jn+1 = Jn+1(Jn,θn),

θn+1 = θn+1(Jn,θn) (1)

is said to satisfy the so-called twist condition if∣∣∣∣∂θn+1(θn,Jn)

∂Jn

∣∣∣∣ > 0, (2)

for every value of (Jn,θn). If this condition fails to be obeyed
somewhere in the phase space, the map is called nontwist.

The standard nontwist map (SNM) was introduced by del
Castillo-Negrete and Morrison; it is defined by the expressions
[22]

yn+1 = yn − b sin (2πxn),

xn+1 = xn + ω(yn+1) = xn + a
(
1 − y2

n+1

)
mod1, (3)

where x ∈ [0,1) and y ∈ R. The parameters a and b are
independent and their values are in the range a ∈ [0,1) and
b ∈ R [22]. The SNM is an area preserving map and it is
described by the Hamiltonian [22]

H (x,y,n) = H0(y) + H1(x,n) = ay

(
1 − y2

3

)

− b

2π
cos(2πx)

∞∑
m=−∞

δnm, (4)

where δnm = δ(n − m).
If b = 0, the SNM represents an integrable system and the

trajectory for an initial condition lies straight on lines that
circle around the x domain [23]. The function ω(y) in (3)
can be identified by the winding number, and its derivative
is the shear. The latter does not change sign, provided ω(y) is
either monotonically increasing or decreasing, thus satisfying
the twist condition (2). For the map in Eq. (3) Jn = yn and
θn+1 = xn+1, and the twist condition (2) is violated, since∣∣∣∣∂xn+1(xn,yn)

∂yn

∣∣∣∣ = |ω′(yn)| = 0, (5)

for yn = 0 and for (xn,yn) along the so-called shearless curve
in the phase space, which is the loci where the shear changes
sign [24]. The quadratic dependence of ω on y leads to two
invariant curves with the same winding number at both sides
of the shearless curve. For b �= 0 we observe two island chains

FIG. 1. Transmissivity of the SNM for b = 0.6 with the final time
n = 100 and n = 400, represented by the black and the orange (light
gray) curves, respectively. The red (blue) dashed (dash-dotted) line
indicates an a value that represents low (high) transport in the phase
space. We mark a secondary peak at a = 0.8068 in dotted green line.

structured on each invariant curve, and they are separated by a
shearless invariant torus.

The violation of the twist condition by the SNM has as a
consequence diverse bifurcations like periodic orbit collision
and separatrix reconnection [23]. The type of bifurcation
that rises in the nonlinear dynamics is influenced by the
nonmonotonicity inherent in the system [25]. In a chaotic
regime, reconnections as rearrangements of level curves, as
defined in [26], could not occur, but the “manifold recon-
nection” is possible [25]. The manifold reconnection is the
rearrangements of the set of stable and unstable manifold
originated in hyperbolic points from a situation of intracrossing
(mutual crossing absent) to an intercrossing situation (frequent
mutual crossing) [25,27]. The reconnection occurs between
manifolds from different chains of islands and the outcome
is an observable influence in the transport through the phase
space [25].

The island chains bordering the shearless curve are the
transport barriers, in the sense that chaotic orbits in both sides
of it do not mix. Even after the manifold reconnection, for a
weak perturbation, the transport is hindered if the shearless
curve still exists. Only after that curve is destroyed is there
transport across the internal partial barrier.

III. TRANSPORT ACROSS THE INTERNAL
PARTIAL BARRIER

We assume the existence of a transport barrier between two
chains of islands embedded in a large chaotic orbit contained
in the interval −0.8 < y < 0.8, for appropriate values of the
parameters a and b. One direct measure of the transport across
the barrier is the transmissivity T , defined as the fraction
of the number of orbits that cross the barrier over the total
number of orbits in a given time [27]. To investigate the
influence of the barrier in the transport we place N = 106 initial
conditions on the line y = −0.8. Then, we iterate them for two
different times, n = 100 and n = 400, counting the number of
trajectories that cross the line y = 0.8.

In Fig. 1 we see the dependence of the transport on
the parameter a for b = 0.6. There is a primary peak (blue
dash-dotted line) in the transmissivity for a = 0.8054 and
n = 100 (black curve), indicating a high transport level through
the phase space. Our goal is to investigate the difference
between the high (blue dash-dotted line) and the low (red
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FIG. 2. Phase spaces of the SNM for b = 0.6 and (a) a = 0.8042 (low transport) and (b) a = 0.80543 (high transport). The orange (light
gray) and blue (dark gray) curves represent the upper and lower period-11 island chain remnants.

dashed line) transport and the mechanism that led the system
to a high transmissivity regime. The low and high transport
cases are represented by the parameters (a,b) = (0.8042,0.6)
and (a,b) = (0.805 43,0.6), respectively. The respective phase
spaces are shown in Fig. 2.

A secondary peak of transport appears for n = 400, rep-
resented by the orange (light gray) curve, about (a,b) =
(0.8068,0.6) indicating the other value of high transmissivity.
However, the higher value of the primary peak over the
secondary peak indicates that the transport of the first case
occurs on a shorter time scale. There is not a significative
difference between the phase spaces of the low and high
transport cases, represented by the red (dashed) and blue
(dash-dotted) lines in Fig. 1, respectively.

The global dynamics of the SNM for the large chaotic
regions, as shown in Fig. 2, suggests that a typical chaotic
trajectory can diffuse either to large positive or negative values
of y. If a shearless curve (perfect transport barrier) exists, it is
relatively easy to distinguish the initial conditions that tend to
large positive or negative y. However, if the shearless curve has
broken up, a partial barrier is left therein, making it possible
that trajectories cross the barrier.

One useful concept is the escape basin: let the two exits A
and B be the lines y = 1 and y = −1, and we consider the
phase space region {[0,1) × (−1,1)}. The escape basin of exit
A (respectively B) is the set of initial conditions that generate
trajectories that, after some specified time interval τ , cross the
line y = 1 (respectively y = −1). If this time τ is large enough,
there can still exist orbits that do not escape, either because they
are trapped within small periodic islands or due to a strong
stickiness effect. The values y = ±1 are quite arbitrary but, as
long as they are placed far away from the transport barrier, the
results are not expected to change.

In Fig. 3 we determine the escape basin for two exits men-
tioned above. We use a grid of 5000 × 5000 initial conditions
over the phase space region {[0,1) × (−1,1)}. If an initial
condition originates a trajectory that passes through y = 1
or y = −1, its position is marked by a blue (dark gray) or
green (light gray) pixel, respectively. If the trajectory does not
escape until the time limit n = 400, we leave a blank point.
If there is a perfect transport barrier separating the two chains
of islands, we have a well-defined separation between the blue
(dark gray) and green (light gray) regions, which is the escape
basin boundary [28]. Accordingly, in Fig. 3(a) the escape basin

FIG. 3. Escape basins for the SNM for b = 0.6 and (a) a = 0.8042, (b) a = 0.805 43. The blue (dark gray) and green (light gray) basins
represent the set of initial conditions that escape through the exit y = 1.0 and y = −1.0, respectively, within n = 400 map iterates.
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boundary is well defined and there is no mixing between the
green (light gray) and the blue (dark gray) regions. In this case,
we can say that the escape basin boundary is the transport
barrier itself.

For the high transport case in Fig. 3(b), we see the two
regions overlapping and forming incursive fingers [28]. Thus,
before the breakup of the transport barrier, there were initial
conditions that belonged to the blue (dark gray) escape basin;
after the barrier breakup, they begin to belong to the green
(light gray) escape basin. The extremely convoluted nature of
the escape basins and of the corresponding boundaries suggests
a fractality that can only be accessed by proper numerical
diagnostics, as it will be shown in the next section.

IV. CHARACTERIZATION OF ESCAPE BASINS

The presence of incursive fingers in the near-barrier region
of Figs. 3(a) and 3(b), and the corresponding intertwining of
the corresponding escape basins, is typical of fractal structures
in nonlinear dynamics. These fractal structures are basically
formed by the meandering of the invariant stable and unstable
manifolds of unstable periodic orbits in the near-barrier region.
One example is the cantorus formed by the remnants of
invariant tori with a self-similar gap structure akin of the
Cantor set. In this section, we characterize numerically the
fractal behavior of the escape basins and their boundaries using
appropriate diagnostics.

A. Uncertainty dimension

The concept of uncertainty dimension has been long intro-
duced in the literature of dissipative dynamical system, being
a fast and reliable way to estimate the box-counting dimension
D of the basin boundary between two basins of attraction.
It was rapidly recognized that its usefulness lies beyond the
realm of dissipative systems, being applied to basins of escape
in open Hamiltonian systems, for example. We can thus refer,
in general, to “basins of behavior,” when referring to a set
of initial conditions in phase space which leads to the same
behavior, either the convergence of a given attractor, an escape
through a given exit, or some similar concept.

Let the basin belong to a two-dimensional phase space, and
let N (δ) be the minimum number of squares of side δ necessary
to cover the basin boundary. Then its box-counting dimension
is D = limδ→0 ln N (δ)/ ln(1/δ), such that N (δ) scales as δ−D

for small enough δ [29].
The uncertainty dimension, on the other hand, quantifies the

final-state uncertainty of the points belonging to two or more
basins. In the terms of escape basins used in this work, we can
denote A and B the escape basins colored in blue (dark gray)
and green (light gray), respectively, as shown in Fig. 3. We
randomly pick up a large number of initial conditions (x0,y0)
in a region of phase space (near the transport barrier), then
iterate the SNM until the corresponding trajectories reaches
the corresponding exit (y = 1.0 for points belonging to A and
y = −1.0 for those in B).

We performed the calculation of the uncertainty exponent
using 2 × 104 initial conditions randomly distributed over the
interval 0 � x0 < 1 and −0.7 < y0 < 0.7. For each initial
condition (x0,y0) we choose (x0 ± ε,y0) then we iterate until it

TABLE I. Escape basin boundary uncertainty dimension for the
cases shown in Fig. 2, with b = 0.6 and final time evaluated after
n = 400 iterations of the SNM.

Parameter a Uncertainty dimension D Correlation coefficient R

0.8042 1.905 ± 0.003 0.9957
0.80543 1.906 ± 0.002 0.9983
0.8068 1.905 ± 0.003 0.9967

escapes. If all initial conditions converge to the same escape,
we refer to the initial condition as ε certain, otherwise as ε

uncertain. The fraction of ε-uncertain points is expected to
scale with ε as a power law f (ε) ∼ εα , where α is the so-called
uncertainty exponent. It can be shown that α = 2 − D, such
that, if the basin boundary is smooth (D = 1), then α = 1,
whereas fractal basin boundaries have 0 < α < 1 [30].

We consider three situations indicated in Fig. 1, for b = 0.6
and a = 0.8042 (low transmissivity), 0.805 43 (high transmis-
sivity) and 0.8068 (intermediate transmissivity); the respective
escape basins are shown in Figs. 4(b)–4(d). The f (ε) is
estimated as the ratio of the number of ε-uncertain by the total
number of initial conditions iterated for n = 400. Figure 4(a)
exhibits the log-log of f (ε) as a function of ε, where the angular
coefficient gives the uncertainty exponent α. By means of α

we compute the basin boundary dimension D (Table I). In
addition, we included error bars estimated to be the square
root of the number of uncertain conditions.

The basin boundary dimension partially answers the ques-
tion of how unpredictable is the outcome of a given trajectory.
The α values are less than 1 for the three situations, indicating
the presence of the fractal basin boundary, i.e., there is a
final state sensitivity. However, the values are not significantly
different from each other. The fractal dimension boundary does
not give us an answer about the difference of the transport for
each case. This open question could be better explained in
terms of basin entropy.

B. Basin entropy

The results obtained from the uncertainty dimension point
out that the escape basin boundary is fractal, indicating an
uncertainty with respect to the final state. However, if we want
to know whether or not one escape basin is more unpredictable
than the other, the uncertainty dimension gives no answer. To
answer this question, Sanjuán et al. have recently introduced
the concept of basin entropy [31].

We divide the phase space in N boxes, each of them
containing a number Nc of initial conditions which evolve
through time towards a given escape. Let a positive integer
i denote a box (i = 1,2, . . . N) and j a possible escape (j =
1,2, . . . NA). For the ith box, the fraction of initial conditions
escaping through the j th exit defines a probability pij , such
that the entropy of each box is [21]

Si = −
NA∑
j=1

pij log10(pij ). (6)

In our case there are onlyNA = 2 escapes, hence the entropy
of each box varies from 0, if all the initial conditions inside
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FIG. 4. (a) Log-log plot of the fraction of ε-uncertain points as a function of the scaling box size ε computed for the escape basins of three
different values of parameter (b) a = 0.8042, (c) a = 0.805 43, and (d) a = 0.8068.

a box evolve toward the same exit, and to log10 2, if the
initial conditions escape through the two exits with the same
probability. The basin entropy is obtained from the average
value of the box entropies,

Sb = S

N
= 1

N

N∑
i=1

Si. (7)

If, out of the N total number of boxes, Nb boxes lie on the
basin boundary, we define the boundary basin entropy as Sbb =
S/Nb. The difference between Sb and Sbb is that the latter
is normalized by the number of boxes intercepting pieces of
the basin boundary, whereas Sb considers the total number of
boxes.

In principle, for higher values of N and Nc, the value of
the basin entropy is more accurate. However, in numerical
simulations one has to seek a compromise between statistical
convergence and computational time. Accordingly, we have
divided the phase space region −1 < y < 1 and 0 � x < 1
into N = 2 × 106 boxes. Within each box, we consider 52 =
25 initial conditions over a grid with spacing ε = 1 × 10−3,
and we compute the basin entropy.

We plot in Fig. 5 the basin entropy (Sb) and the boundary
basin entropy (Sbb) as a function of the parameter a with the
same interval as specified in Fig. 1. The main peak of the
transmissivity nearly coincides with the maximum value of
the basin entropy, at a = 0.805 43. The second largest peak in
transmissivity, for a = 0.8068, coincides with the secondary

peak of the basin entropy. The small peak of T at a = 0.8042
is also a peak of Sb.

Moreover, from Fig. 5 we also see that the basin boundary
entropy is related to the complexity of the escape basin
boundary, since the value of Sbb is zero for no transmissivity
at all, suggesting a smooth escape basin boundary, which turns
out to be the shearless curve. As the basin entropy increases
we also see a jump of the basin boundary entropy to a value
near 10−3 which stays approximately constant in the interval
of a values yielding high transmissivity. This indicates that
the escape basin boundary is complex when the shearless
curve has broken and its remnants make for a partial transport

FIG. 5. Comparison of Sb and Sbb for different values of the
parameter a. The red dashed line represents the low transmissivity,
the blue dash-dotted line is the primary peak of transport, and the
green dotted line is the secondary peak of transport.
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barrier. Indeed, we found that the box-counting dimension of
the boundary is fractal for the three cases considered, all of
them corresponding to the region of high transmissivity.

It has been proposed that, if Sbb > ln 2, then the basin
boundary is fractal. This is a sufficient but not necessary
criterion for fractality, though, since some fractal basins do
not fulfill this condition. This has been observed, for example,
in escape basins related to problems in plasma physics, as the
E × B drift motion of charged particles in magnetized plasmas
[32] and the field line structure in a tokamak with ergodic
magnetic limiter [33]. In our case, likewise we have only
two exits (NA = 2), the basin boundary entropy is lower than
ln 2, and the corresponding dimension is found to be fractal.
According to Ref. [31] this criterion would be easily achieved
with more than two exits.

The region of no transmissivity for larger a values is curious
since, while the basin entropy is practically zero, the basin
boundary entropy is not. Since no transmissivity means that a
transport barrier has been formed, a nonzero (actually higher)
value of Sbb suggests that the boundary is fractal. Hence we
conclude that the shearless curve has turned into a barrier with
very complicated shape, probably a fractal curve, but which
divides the phase space into escape basins as before.

V. TURNSTILES

In this section, we describe how apparently similar phase
spaces shown in Figs. 2(a) and 2(b) present huge differences
in their transmissivity values in Fig. 1. One of the key points to
understand those differences is to try to determine the location
where the leaky trajectories follow to increase or decrease the
transmissivity. For area preserving maps, the Poincaré-Birkoff
theorem states that for each fixed stable elliptic point there is a
corresponding fixed unstable hyperbolic point. These unstable
points generate a tangle of unstable and stable manifolds.
The configuration of the tangle interferes in the leak of the
trajectories in the phase space. In Refs. [34,35], the location
of trajectories that cross barriers can be explained determining
the turnstiles and lobes.

However, how does the turnstile mechanism act in the
nontwist systems and its transport properties? The existence
of twin island chains is a signature of nontwist systems, in this
case this providing us a transition for a scenario of intracrossing
to intercrossing [27]. The turnstile mechanism is also affected
by this transition and has a crucial role in the increase of the
transmissivity through the phase space.

Let OL (OU) denote a hyperbolic fixed point of the lower
(upper) island chain and its stable and unstable manifolds
are represented by WL

s (WU
s ) and WL

u (WU
u ), respectively.

The points of intersection between WL
s (WU

s ) and WL
u (WU

u )
are called homoclinic points of the lower (upper) chain. In
particular, we selected one point P from the homoclinic points;
we called it principal intersection point (PIP) and name it
PL (PU) for the lower (upper) island chain [36,37]. The union
of the segments WL

s (O,P ) and WL
u (P,O) creates upper and

lower boundaries of regions in the phase space. The regions
delimited by those boundaries form the turnstiles. A trajectory
that leaves (or enters) a resonance of a specific island must pass
through one of these turnstiles.

FIG. 6. First and second iterate for the initial conditions (ICs)
belonging in the lobe regions for (a) a = 0.8042 and (b) a = 0.805 43.
Circles and squares indicate the iterates from different ICs. The first
(second) iterate is represented by the dashed (solid) line. OL (PL)
indicates the hyperbolic (PIP) point of the lower chain.

In Fig. 6(a) we illustrate the turnstile for two trajectories
marked by the black arrows near the point PL. The lower
island chain manifolds, WL

s and WL
u , are represented by the

magenta (thick dark gray) and cyan (thick light gray) lines,
respectively. The upper island chain manifolds, WU

s and WU
u ,

are represented by the orange (thin light gray) and blue (thin
dark gray) lines, respectively. The trajectory starting from
the black square (circle) is outside (inside) the resonance
zone; after being iterated two times we observe the trajectory
entering (leaving) the resonance zone. In both cases (entering
and leaving) the trajectory remains in the lower island chain
tangled by the manifolds WL

s and WL
u . We attribute this case of

intracrossing as due to the homoclinic tangle of the manifolds
of the island chains.

In Fig. 6(b) we adopt a similar procedure of the previous
case from Fig. 6(a). However, the trajectories from the lower
island chain start to follow the WU

u , represented by the blue
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FIG. 7. Principal intersection points (PIPs) for both cases: high (a = 0.8042) and low (a = 0.805 43) transport. OL (OU) indicates the
hyperbolic point and PL (PU) indicates the PIP from the lower (upper) chain. Full circles represent the PIPs from the intracrossing, while full
and hatched squares represented the PIPs from the intercrossing.

(dark gray) line, of the upper island chain after two iterates.
This switch of the trajectories between the lower and upper
island chain represents a modification of the homoclinic
turnstile scenario. Instead, the turnstile describes regions where
the trajectories enter or leave a specific island; here it is a case
where these trajectories effectively cross the island chains in
the phase space. This case represents the intercrossing because
there is a heteroclinic tangle between stable and unstable
manifolds of the upper and lower island chains.

The mechanism underlying the transition from intracrossing
to intercrossing is illustrated in Fig. 7. The circles represent
homoclinic points and the black (gray) square represent the
heteroclinic points obtained from the crossings between WU

s

and WL
u (WU

u and WL
s ). If in the case of Fig. 7(a) we have only

homoclinic points, in Fig. 7(d) we observe the simultaneous
coexistence of homoclinic and heteroclinic points. Another
quantitative characterization of this transition is observed in
Figs. 7(b) and 7(e), and for their respective magnifications,
Figs. 7(c) and 7(f). In the intracrossing the PIPs PU and PL

have an appreciable distance between each other. On the other
hand, the PU and PL are much closer to each other for the
intercrossing.

In Fig. 8(a) for a = 0.805 43, we show where a set of
trajectories with y = 0.8 and x ∈ [0,1) follows until reaches
y = −0.8, in other words those are the leaky trajectories
that cross the phase space and increase the transmissivity

FIG. 8. Flux through the chains of islands for (a) a = 0.805 43 and (b) a = 0.8068. The black dots are the trajectories that crossed the phase
space for n = 100 (a) and n = 400 (b).
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represented by the blue dash-dotted line in Fig. 1. This leak
is also observed in Fig. 8(b) for a = 0.8068 (green dotted
line in Fig. 1). The crosses between WU

s and WU
u of both

previous cases form the turnstile (lobe) where the trajectories
enter. However, due to the proximity PU and PL eventually a
trajectory reaches the turnstiles formed by WD

s and WD
u ; in this

case the trajectory effectively crosses (leaves) the resonance
zone. This way, there is a direct relationship between the
proximity of the PIPs and the high transmissivity.

VI. CONCLUSIONS

The formation of transport barriers in nontwist Hamiltonian
systems is a typical feature caused by the existence of shearless
tori between twin sets of islands, as in the standard nontwist
map. We choose parameter values for the latter such that the
phase space region is dominated by a large area-filling chaotic
orbit, with small remnants of the twin sets of islands. Albeit
these islands occupy a relatively small portion of the phase
space area available, their effect is strong on the transport
properties, since the shearless curve or its remnants form total
or partial transport barriers.

The transport flux through the barrier has been characterized
numerically by the transmissivity, which is zero if there is a full
barrier between the islands. As this barrier is broken, as one of
the map parameters is varied, we can separate groups of initial
conditions asymptotic to large positive or large negative y

values, which we call escape basins. The word escape here must
be taken with a grain of salt, because our Hamiltonian system
is actually not open. The exit is rather a kind of asymptotic
behavior, rather than a proper escape.

In our simulations, we verify that the basins of escape
have a fractal boundary when the transmissivity is nonzero,
as obtained from an estimate of its box-counting dimension
through the computation of uncertainty fraction. In addition,
we use the recently developed concept of basin entropy,
which measures the unpredictability of the asymptotic state
of the system, as defined in the paragraph above. We found
that the escape basin entropy varies in the same fashion as

the transmissivity does, with a correspondence of the respective
peaks. Moreover, the case with the highest basin entropy
corresponds to a strongly fractal (almost area-filling) curve.

Another characterization of the transport barrier is provided
by the boundary basin entropy. The latter is zero for a regime of
no transmissivity at all (for a � 0.804) indicating the presence
of a smooth transport barrier, which turns out to be the escape
basin boundary as well. In the regime of nonzero transmissivity
(0.804 � a � 0.807) the basin boundary entropy reaches a
roughly stationary value, suggesting the presence of a fractal
basin boundary. This conclusion is supported by our results
for the basin boundary dimension. As for the second region of
no transmissivity (a � 0.807) the basin boundary entropy not
only is nonzero, but also its value is higher than in the previous
region. We conclude that the transport barrier in this case has
a complicated shape, probably a fractal curve.

The numerical characterization that we performed for the
transport across the partial barrier is supported by theoretical
arguments based on the very nature of the barrier. We concen-
trated in this work on the role of the PIPs and the turnstiles on
the transport properties. When there is some amount of barrier
penetration of a given trajectory (i.e., nonzero transmissivity)
we have an intercrossing of the trajectories between the twin
islands in both sides of the barrier. Hence we can also apply
the turnstile hypothesis to the nontwist system, at least when
the winding number profile has a local minimum (where the
shearless curve lies) and also locally monotonic in both sides
of this minimum. The latter condition is naturally verified for
the SNM, but we claim that the same scenario would apply to
more complicated nontwist systems as well, where we could
have this turnstile mechanism acting for each partial transport
barrier.
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