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Abstract – We deal with stochastic network simulations in a model with three distinct species
that compete under cyclic rules which are similar to the rules of the popular rock-paper-scissors
game. We investigate the Hamming distance density and then the basin entropy behavior, running
the simulations for some typical values of the parameters mobility, predation and reproduction
and for very long time evolutions. The results show that the basin entropy is another interesting
tool of current interest to investigate chaotic features of the network simulations that are usually
considered to describe aspects of biodiversity in the cyclic three-species model.

Copyright c© EPLA, 2019

Introduction. – The popular rock-paper-scissors or
RPS game is based on three simple rules that establish
the behavior of rock, paper and scissors in the game: rock
breaks scissors, scissors cut paper and paper wraps rock.
It is a competition game and has been used to study im-
portant aspects of biodiversity in nature because it evolves
cyclically and the cyclical features it engenders are impor-
tant to keep biodiversity. The dynamics and stability of
the cyclic three-species system depend on the specific in-
teractions among the constituent species and in the past
decade, some interesting works used the RPS rules to de-
scribe specific aspects of biodiversity; see, e.g., [1–3] and
references therein.

In the investigations developed in [1,2], the authors
studied competitive interactions between Escherichia coli
populations. In [1], they empirically tested a non-
transitive model community containing three populations
of Escherichia coli. An interesting result was that diver-
sity may be lost in experimental community when dis-
persal and interaction occur over relatively large spatial
scales, whereas the populations coexist when ecological
processes are localized. In [2], a new environment with the
antibiotic-mediated antagonism was studied, and it was
shown that coexistence occurred from a clumped spatial
distribution of producers, suggesting that each producer
can block the invasion of the other producer. An agent-
based simulation of the competition was considered, us-
ing the colicin version of the RPS model, in which the

strains that produce colicins (C) kill sensitive (S) strains,
which outcompete resistant (R) strains, which outcompete
C strains. The study demonstrated that competitions be-
tween these three strains may lead the complete system to
dynamic equilibrium, promoting microbial diversity in the
environment. In [3], the authors focused on the variation
of mobility in systems modelled by the standard rules of
mobility, competition and reproduction, with competition
described as in the cyclic RPS game. The results showed
that mobility may promote or jeopardize biodiversity, de-
pending on the value it gets, compared to competition and
reproduction.

There are many other investigations on biodiversity de-
scribed under the RPS rules and generalisations to four
and more species; some of them are reviewed in refs. [4,5].
In the more recent work [6], a novel procedure to identify
the chaotic behavior engendered by the network simula-
tions used to describe a cyclic three-species system was
developed. The procedure follows the Hamming distance
concept, and it was used to provide a way to unveil the
chaotic behavior of the time evolution that follows the
rules of the RPS cyclic competition model. The subject
was further examined in [7], to see how the Hamming dis-
tance density changes under modifications of the number
of species and the size of the lattice. The two investiga-
tions showed that the Hamming distance density engen-
ders universal qualitative behavior, which does not depend
either on the size of the lattice or on the number of species.

58003-p1



M. Mugnaine et al.

In the current work we further consider the case of three
distinct species, but we consider two different square lat-
tices, with sizes 200 × 200 and 500 × 500, since we want
to add another type of simulation, that may also serve to
infer the chaotic behavior of the stochastic network simu-
lations that are generically used to describe the time evo-
lution; see, e.g., refs. [4–7] and references therein. In the
next section we explain how the stochastic network simu-
lations are implemented to describe the time evolution of
the system.

The main motivation of the work is to develop another
procedure to deal with the chaotic behavior engendered
by the simulations that appear in games of the RPS type,
and to verify how it goes along with the results on the
Hamming distance that appeared before in [6,7]. The sub-
ject is motivated by the fact that in [8], the authors pro-
posed an interesting route to study complex systems via
the basin entropy concept. This relies on a different frame-
work, which was recently used in [9] to study the barriers
and transport through the phase space in nontwist sys-
tems. The basin entropy concept was also used to quantify
the unpredictability of the final state in cold-atoms exper-
iments [10]. In the current work, we want to apply the
basin entropy concept to study the time evolution of the
RPS model with three distinct species that compete cycli-
cally. We also want to compare the results of the basin
entropy with the results of the Hamming distance density,
to see how they behave under the time evolution which we
implement standardly.

Another inspection to be implemented concerns the in-
crease of the mobility and the ending of biodiversity. This
was investigated before in refs. [3,5,7,11–17], and the au-
thors showed that when the mobility increases toward a
critical value, the system loses diversity, ending up with
a single species. Inspired by this fact, here we also study
how the basin entropy behaves for a very high value of the
mobility, above the critical mobility.

To comply with the above motivations, we organize the
work as follows. In the next section we introduce and
explain all the steps required to perform the simulations
and in the third section we briefly review the study on the
Hamming distance density that appeared before in [6,7].
We go on and in the fourth section we examine the basin
entropy concept, and adapt it to the systems to be in-
vestigated in the current work. We end the work with
comments and conclusions, and with some perspectives
for future works.

Procedure. – We consider a model of a system of three
distinct species a, b, and c and use the colors red, blue, and
yellow, respectively, to identify the set of species. In the
model, the three species evolve in time under the rules of
mobility (m), reproduction (r) and competition or preda-
tion (p), which are normalized to obey m + p + r = 1;
also, for simplicity we consider p = r, since distinct val-
ues for p and r do not qualitatively change the issues to
be investigated in this work. We use square lattices of

size L = N × N , with N = 200, 500, and also 1000,
which obey periodic boundary conditions. Also, we con-
sider the Moore neighborhood, where any site in the lattice
has eight neighbors, two horizontally, two vertically and
four diagonally.

We model the system’s dynamics using stochastic sim-
ulations, which follow the standard formalism. The time
evolution of the model is implemented via the use of ran-
dom access to the species and the rules they obey. The
procedure starts preparing the initial state, which is built
as follows: we randomly select one site and one of the four
possible states (species a, b, c or an empty site e) which
are identified by the colors red, blue, yellow and white, re-
spectively, and paint the site with the corresponding color.
This is repeated N2 times to build the initial state. We
then evolve the initial state by following the rules: we
randomly select a site, which is the active site, and then a
neighbor. We randomly select the rule and apply it: if the
rule selected is mobility, the two sites exchange position,
that is, under mobility a b → b a, etc. If the rule is repro-
duction, we color the neighbor with the same color of the
chosen site, if and only if the neighbor is empty, that is, un-
der reproduction a e → a a, b e → b b, and c e → c c, where
e represents an empty site. Finally, if the rule is competi-
tion, we use the rock-paper-scissors rules, that is a b → a e,
b c → b e and c a → c e; see, e.g., refs. [4–7,11–18]. We re-
mark that the empty site is inert, that is, if the active
site is empty, we return and choose another site. We do
this N2 times and this identifies the generation time. We
account for the time evolution using the generation time
as the appropriate unit of time. In fig. 1, we illustrate
the time evolution of the stochastic simulations that we
implement in this work with an initial state and a snap-
shot after 10000 generations, for lattices with 200 × 200
and 500 × 500 sites. The initial state is where all the four
possible states are uniformly distributed, as we can see in
figs. 1(a) and (c). At generation g = 10000, we can observe
spiral structures in the lattice, for N = 200 and N = 500,
in figs. 1(b) and (d), respectively. The spiral structures are
typical of systems that evolve under the above rules, with
the three species competing cyclically and keeping biodi-
versity, with the abundance oscillating around an average,
but never reaching zero or unit, to disappear or dominate
the system, respectively. There are other interesting stud-
ies on the presence of stable and unstable spiral patterns
in similar models; see, e.g., refs. [19,20].

Hamming distance. – Let us now revisit the Ham-
ming distance density investigated before in [6,7]. In the
current context, the Hamming distance measures the dif-
ference between two N × N matrices. To implement this,
we first consider the lattice that describes the initial state
as an N × N matrix, and make a copy of it. The initial
state is used to run the simulation to get to the final state,
which is then saved. However, during the time evolution
a new file is created, in which one saves every single step
used to run it. One then takes the copy of the initial state
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Fig. 1: The initial state for the lattice with (a) N = 200 and
(c) N = 500 and a snapshot after 10000 generations in (b) and
(d), respectively. For both cases, m = 0.5 and p = r = 0.25.

and randomly selects a lattice site and modifies its con-
tent, changing its color to another one. This new state has
the tiniest difference, since among the N2 lattice sites it
has a single site which is different from the initial state al-
ready used to evolve in time. We use this new initial state
to run the same simulation already considered, evolving it
according to the very same rules that appear in the saved
file. The procedure leads to another final state, which is
also saved. We then count the number of distinct sites
between the two lattices in every generation and divide
it by N2 to get the Hamming distance density. This was
studied before in [6], and more specifically in [7], where
the measure was shown to have a universal qualitative be-
havior, despite its quantitative dependence on the initial
state.

We also take the opportunity and investigate how the
increase of mobility contributes to break biodiversity. This
is an interesting issue, firstly suggested in [3], that was also
examined in refs. [5,7,11–17], and we use this as a mecha-
nism to help us to investigate the basin entropy behavior
in the novel environment that we explore below. To il-
lustrate the results, we investigate the Hamming distance
density with m = 0.5, which is below the critical mobil-
ity, in the region that mantains the biodiversity. We also
study the extinction case, with m = 0.98, which is above
the critical value, so in the region that breaks diversity.
We do not investigate the critical value of mobility, since
it was already investigated in refs. [3,5,7,11–17] and is now
a known fact.

The motivation to study the Hamming distance den-
sity is to compare its behavior with the novel investiga-
tion to be done in the next section, where we adapt the
basin entropy concept to the network simulations that we
develop in this work and use it to unveil the chaotic be-
havior it engenders. We describe the Hamming distance

Fig. 2: The Hamming distance density, obtained in the lattice
with size 200×200 (black curve) and 500×500 (red curve), for
10000 generations. For both cases, m = 0.5 and p = r = 0.25.

Fig. 3: The Hamming distance density for m = 0.98 and differ-
ent initial conditions in a lattice with size 200 × 200. (a) The
Hamming distance density is calculated between the evolution
of the original grid and the evolution up to 20000 generations of
two other initial conditions: IC1 (orange curve) and IC2 (green
curve). In panels (b), (c) and (d) we have the final snapshot
from the original initial condition, IC1 and IC2, respectively.

density running the simulations for two lattice sizes, with
N = 200 and N = 500, and we evolve the simulations
up to 10000 generations. The results of these simulations
are displayed in fig. 2 in the case in which the mobility is
below the critical mobility, and from it we can observe the
universal qualitative behavior unveiled before in [6,7]: the
Hamming distance density starts at the very small value
1/N2 and increases smoothly, stabilizing at some average
value below unity. The results of fig. 2 are displayed as an
average over 100 realisations, starting from different initial
states. The simulations are similar to the case investigated
before in [7], so we omit further details here.

We also display in fig. 3(a) the Hamming distance den-
sity for the lattice with N = 200, with the mobility very
close to unit, so above the critical mobility. Here we run
the network simulations up to 20000 generations. In this
case, the Hamming distance density is calculated between
the evolution of the original grid and the evolution of two
other initial conditions: IC1 and IC2. The initial condi-
tions IC1 and IC2 are equal to the original one, except for
one site, randomly chosen. In figs. 3(b) and (c), the winner
species is the red one, so, the Hamming distance becomes
zero in fig. 3(a). From fig. 3(d), the winner species is the
blue one, so the Hamming distance becomes one, relative
to the original one, represented in fig. 3(b). In both cases
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we note that diversity is broken for very high values of the
mobility: if we change only one site the winner species can
be one of the three different species, giving to the Ham-
ming distance the value zero or one. These results are
in good agreement with the previous works described in
ref. [7].

Basin entropy. – The basin entropy is a useful tool
that can be applied to nonlinear dynamics to enable us to
measure the final state unpredictability for numerical and
experimental setups. Here we want to use this recently
introduced concept of basin entropy [8] to characterize the
time evolution which we are studying in this work.

Since we are dealing with the stochastic network evo-
lution of a cyclic three-species system, the basin entropy
can be calculated in the following way. Firstly, we consider
the lattice with size N × N and then we divide the lattice
in Nb × Nb square non-overlapping boxes. For each box
inside the lattice, we compute the Gibbs entropy given by

Si = −
NA∑

j=1

pij log pij . (1)

In this work, we use NA = 4 because the set of possibilities
in the lattice includes the three species and the empty site.
The term pij represents the proportion of how many sites
inside the i-th box are occupied by the specific species
j -th. In the limit case, where all states inside the box are
occupied by the same j -th state, the contribution to the
sum of eq. (1) is equal to zero. On the other hand, the
entropy is maximum if all possible states are equiprobable,
in this case its value is equal to log NA.

The second step is to make the sum of all terms of the
entropy that cover the full lattice, that is,

S =
Lb∑

i=1

Si, (2)

where Lb is the number of boxes of size Nb × Nb in the
lattice N ×N . Finally, the basin entropy is defined by the
expression

Sb = S/Lb. (3)

Let us now implement the basin entropy simulations
with a box of size 5×5. Moreover, to see how the basin en-
tropy behaves as we increase the lattice size, we take three
lattice sizes, with N = 200, 500, and 1000. In figs. 4, 5
and 6 we depict the basin entropy for these three distinct
lattices, running the simulations up to 10000 generations.
In all cases, we used for the mobility the value m = 0.5
(with p = r = 0.25), which is below the critical mobility,
so the systems keep biodiversity. Since the basin entropy
depends on the initial state, the results shown in these fig-
ures were obtained from an average over 10 distinct simu-
lations, each one started with a different initial state. We
see from the results that the basin entropy Sb starts at the
highest possible value: a state where all the four possible
states are equiprobable, as we can see in figs. 4(b), 5(b)

Fig. 4: (a) The basin entropy for the lattice with size 200×200,
m = 0.5 and p = r = 0.25. In the cases (b) and (c) we represent
the lattices for the initial state and a snapshot for generation
g = 10000, respectively.

Fig. 5: (a) The basin entropy for the lattice with size 500×500,
m = 0.5 and p = r = 0.25. The initial state is shown in (b).
The grid for the generation g = 10000 is represented in (c).

Fig. 6: (a) The basin entropy for the lattice with size 1000 ×
1000, m = 0.5 and p = r = 0.25. The initial state is shown
in (b). The snapshot for the generation g = 10000 is depicted
in (c).

and 6(b). We run the simulations and the systems evolve
in time with the basin entropy decreasing and converging
toward a positive value. The convergence is reached after
the spiral structures are formed in the lattice, as we ob-
serve from the snapshots displayed in figs. 4(c), 5(c) and
6(c). The positive values of Sb that appear in figs. 4(a),
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Table 1: Average and standard deviation of the basin entropy
for different lattice sizes using 20 simulations. The values of
the parameters are m = 0.5 and p = r = 0.25, with the time
evolution ending at g = 3000.

Lattice size Basin entropy
200 × 200 0.63 ± 0.02
500 × 500 0.64 ± 0.01

1000 × 1000 0.637 ± 0.003

Table 2: The basin entropy for the three distinct box sizes 4×4,
5×5 and 10×10. They are shown in three blocks of three lines,
which account for the three lattice sizes, with N = 200, 500
and 1000, from top to bottom, respectively.

Box size Basin entropy
4 × 4 0.60 ± 0.03
5 × 5 0.63 ± 0.02

10 × 10 0.75 ± 0.03
4 × 4 0.605 ± 0.009
5 × 5 0.64 ± 0.01

10 × 10 0.76 ± 0.01
4 × 4 0.600 ± 0.005
5 × 5 0.637 ± 0.003

10 × 10 0.750 ± 0.006

5(a), and 6(a) show that the basin entropy seems to be
insensitive to the size of the lattice and suggest that the
stochastic simulations that we are monitoring evolve un-
veiling a complex chaotic behavior.

In order to further understand how the results shown
in figs. 4, 5 and 6 depend on the size of the lattice, let
us calculate Sb using m = 0.5 and r = p = 0.25 for each
one of the three lattice sizes, taking an average over 20
simulations, each one starting from a different initial state
for the three distinct lattice sizes. Since the results in
figs. 4, 5 and 6 show that Sb converges rapidly, we calculate
each Sb at the time g = 3000. The results are shown in
table 1, for the lattices with 200 × 200, 500 × 500, and
1000 × 1000 sites, respectively. They indicate that under
the presence of biodiversity, the basin entropy is positive
and independent of the lattice size.

To investigate the dependence of the basin entropy on
the size of the box used in the simulations, let us now con-
sider two other box sizes, one with 4×4 and the other with
10 × 10 sites. Although there is no qualitative difference,
we noted that the basin entropy depends quantitatively
on the size of the box used to implement the simulations.
The results are shown in the table 2, obtained at the
time g = 3000 with an average over 20 distinct simula-
tions. They corroborate the previous investigation, that
the basin entropy does not depend on the size of the lat-
tice. However, it depends on the size of the box used to
simulate the entropy, and it increases as the size of the
box is increased.

Fig. 7: The basin entropy for m = 0.99 and p = r = 0.005, in a
lattice with size 200×200 (a), 500×500 (b), and 1000×1000 (c).

In order to further stress the importance of the study
of the basin entropy behavior, we take the same three lat-
tices and the box of size 5 × 5, but now we calculate the
basin entropy using for the mobility the value m = 0.99
and p = r = 0.005. This value is above the critical mo-
bility, so the system is supposed to evolve toward a trivial
final state containing a single species, ending biodiversity.
We then expect that Sb ends up vanishing as time goes
by. The results are depicted in fig. 7, for the three dis-
tinct lattice sizes, for g = 20000, 50000 and 80000, respec-
tively. They show that the basin entropy goes to zero as
the system evolves in time, indicating that in the long run
the system always loses biodiversity. Although in fig. 7
we are not showing the snapshots at that final state, we
confirmed that the lattice is entirely filled with a single
color which can be red, blue or yellow. We note, however,
that although Sb always vanishes, it takes longer times
to vanish as the lattice size increases, showing that larger
lattice sizes delay but do not prevent the extinction of
biodiversity.

The above results show that, differently from the Ham-
ming distance density, the basin entropy evolves in time
decreasing from the value that measures the well-mixed
initial state to another state in which the three species
strive to aggregate in order to survive in the competitive
environment. Moreover, the basin entropy has the advan-
tage that it is easier to be implemented numerically, since
one does not need to compare two distinct lattice evolu-
tions at every generation, and also, it always goes to zero
in the case of the end of biodiversity, independently of the
initial state to be considered to implement the simulation.

We have done other simulations, for other values of mo-
bility, but they all corroborate the results displayed in
figs. 4, 5, and 6, when it is below the critical mobility, and
in fig. 7, when it is above the critical mobility.

Comments and conclusions. – In this work we inves-
tigated the behavior of a model described by three distinct
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species that evolve in time governed by the action of mobil-
ity, competition and reproduction, with competition being
controlled by the rules of the rock-paper-scissors game. In
fig. 1 we displayed the initial state and a snapshot af-
ter 10000 generations, for the lattices with 200 × 200 and
500 × 500 sites, with the parameters given by m = 0.5
and r = p = 0.25. We then reviewed the Hamming dis-
tance behavior of the system for two distinct lattice sizes.
We considered lattices with 200× 200 and 500× 500 sites,
and the results that are shown in figs. 2 and 3 unveiled
good agreement with the investigations reported before in
refs. [6,7].

We then considered a new possibility, that is, we used
the basin entropy concept to describe the chaotic be-
havior of the system. In this new case, we considered
three distinct lattices, with sizes 200× 200, 500× 500 and
1000×1000. The results showed that when mobility is not
too high, the systems preserve biodiversity and the basin
entropy decreases from a higher initial value to a lower
but asymptotically constant and positive value. They are
depicted in figs. 4, 5 and 6. We also calculated the average
value of the basin entropy to show that is almost insen-
sitive to the lattice size. In order to see how the basin
entropy depends on the size of the box required to imple-
ment the simulation, we have also used three distinct box
sizes, with 4 × 4, 5 × 5, and 10 × 10 sites. The results
are shown in table 1 and table 2, and they indicate that
for a given box size, the basin entropy does not depend
on the lattice size. However, it increases as we increase
the box size. Furthermore, we investigated the basin en-
tropy for the very large value of mobility, m = 0.99. In
this case biodiversity is broken and, as a consequence, the
basin entropy ends up vanishing, indicating that the sys-
tem evolves to a trivial final state with a single species
filling the entire lattice. These results are shown in fig. 7.

The results displayed in figs. 4, 5, 6 and 7 and in ta-
ble 1 and table 2 allow to conclude that the basin entropy
concept is another useful tool that can be used to inves-
tigate biodiversity in a three-species model that evolves
cyclically under the rules of the rock-paper-scissors game.
As we have shown, the basin entropy concept which we
implemented in this work is simpler and faster to be im-
plemented numerically, since it does not need to compare
two distinct lattice evolutions, which is required to get the
Hamming distance. Although the simulations require the
presence of boxes of size Nb × Nb, this is not a problem
if one chooses Nb as a submultiple on N , bigger than the
number of species but much smaller than N itself.

Since the current investigation is the first study on the
subject, further research is welcome and we are now ex-
ploring how the Hamming distance and basin entropy be-
have in generalized models, when one adds more species
and/or modifies the rules that control the time evolution,
changing the dynamics of the system; see, e.g., the mod-
els investigated in refs. [19,20]. In particular, we are also
interested in the study of the basin entropy under the
presence of an apex predator, in a model similar to the

case recently considered in ref. [21]. More specifically,
the investigation implemented in the recent work [22] un-
veiled that the apex predator decaying parameter can be
used to control the time evolution of the system, which
may terminate into three qualitatively different possibili-
ties, separated by two distinct phase transitions. It is of
current interest to study how the Hamming distance and
the basin entropy behave as one varies the apex predator
decaying parameter, reaching and crossing the two critical
phase transition values. We hope to report on this and on
other related issues in the near future.
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