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ABSTRACT

Non-monotonic area-preserving maps violate the twist condition locally in phase space, giving rise to shearless invariant barriers surrounded
by twin island chains in these regions of phase space. For the extended standard nontwist map, with two resonant perturbations with distinct
wave numbers, we investigate the presence of such barriers and their associated island chains and compare our results with those that have
been reported for the standard nontwist map with only one perturbation. Furthermore, we determine in the control parameter space the
existence of the shearless barrier and the influence of the additional wave number on this condition. We show that only for odd second wave
numbers are the twin island chains symmetrical. Moreover, for even wave numbers, the lack of symmetry between the chains of twin islands
generates a ratchet effect that implies a directed transport in the phase space.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0022073

The collective motion of many trajectories is a subject of great
interest in many areas, in particular, how transport occurs and
changes for specific conditions. The ratchet models are an out-
standing description to explain the transport phenomena in
spatially periodic systems without a directed force. The ratchet
models have been considered in many applications, for instance,
atoms in waves of light, turbulent plasmas, cold atoms, molecular
motors, and others. In this work, we study the ratchet transport
in a non-monotonic system called Extended Standard Nontwist
Map (ESNM). The ESNM is a modified version of the Stan-
dard Nontwist Map known for describing transport in reverse
shear and barrier breaking systems. The extended version pro-
duces new features such as unbalanced stickiness and unbiased
transport. We investigate the parameter space in detail to iden-
tify the breakup of the transport barrier and the emergence
of a directed ratchet transport. In addition, the parameters for
which the directed transport is null, negative, or positive are
presented.

I. INTRODUCTION

In dynamical systems, the characterization of transport plays
an important role in many areas of research since it helps us to

understand the movement of groups of chaotic trajectory. The study
of transport in Hamiltonian systems is well established and based
on the Kolmogorov–Arnold–Moser (KAM) theorem.1 When the last
torus is broken, the last barrier disappears and, as a consequence,
the whole chaotic sea in the phase space is available for the chaotic
solution to visit. The remnants of the last KAM tori can act as a par-
tial barrier and limit the motion of irregular system components.1,2

The properties and transport mechanism of the standard map were
studied by MacKay et al.2 and the Cantor sets, named cantori, were
responsible for the partial restraint to the chaotic trajectories.

Transport applications are relevant to atmospheric and oceanic
problems, where the particle transport in geophysical flows is impor-
tant for plasmas and accelerators, where particles are lost, for wave
heating rates in plasmas, chemical reactions, and many other physi-
cal, biological, and social problems.2–4

Recently, a new feature was observed in the conservative trans-
port phenomenon: a preferential direction for the transport in
the phase space without external bias, the so-called Hamiltonian
ratchets.5 The ratchet effect is defined by the emergence of a directed
current, or ratchet current, which is characterized by the directed
motion of the chaotic trajectories without a directed force.4,6–10 The
ratchet study is motivated by its application in atoms in waves of
light,7 turbulent plasmas,11,12 cold atoms,13 molecular motors,14 and
other examples.
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In previous works, it was demonstrated that the ratchet effect
is a consequence of a spatial and/or temporal symmetry breaking
of the system. Since, by definition, a directed force is not present,
the breaking of symmetries is responsible for the transport. Wang
et al.15 studied the ratchet effect on the extension of the standard
map, where the space and time symmetry is broken by the introduc-
tion of unevenly spaced and phase shifted kicks. As a consequence,
a nonzero classical current, represented by a nonzero first moment,
is identified.15 Gong and Brumer5 examined the scenario of directed
transport in the modified kicked rotor system where the spatial sym-
metry is broken by a second kicking field. They showed that due to
the spatial symmetry, regular islands immersed in the chaotic sea
have partners in the Poincaré section. Thus, when the spatial sym-
metry is broken, the structure of partner islands is also broken and
the chaotic trajectories tend to move in a specific direction.5

The twist maps have already been used to study the ratchet
effect. They satisfied the twist condition globally and the KAM
theorem can be used to study the barriers in the system. However,
the ratchet effect has not yet been reported in nontwist maps. A non-
twist system violates the twist condition on an invariant curve in
the phase space, the shearless curve.16 The standard nontwist map
(SNM) was introduced by del Castillo-Negrete and Morrison.16 The
SNM is a simple nontwist system that presents particular features:
the winding number profile is non-monotonic, the scenario of twin
islands, reconnection, and collision of regular orbits.16–19 In addition,
transport in nontwist maps is peculiar due to the presence of a robust
shearless barrier surrounded by chains of twin islands. The develop-
ment of efficient algorithms to determine the values for which values
of the parameters’ non-twist curves breakdown is still a developing
question; in Ref. 20, it was determined the domain of existence of the
non-twist curves for a two parameter family of quadratic standard
maps.

The SNM is a symmetric map and the inherent symmetry of
the system can be preserved or broken with the addition of a new
perturbation. In this paper, we study the effects and consequences
of the breaking symmetry in the phase space transport for another
nontwist map. Our object of study is the extended standard non-
twist map (ESNM) introduced by Portela et al.21 as a nontwist map
with two distinct resonant perturbations due to resonant external
coils in tokamaks. We determine in the control parameter space the
existence of the shearless barrier and the influence of the second res-
onant perturbation on this condition. We also show the presence of
directed transport, the so-called ratchet effect, when the symmetry
is broken, in agreement with previously cited works. The novelty in
our results is the demonstration of the broken twin scenario, where
there is no more correspondence between the chains of twin islands,
once the symmetry is broken. This scenario leads to unbalanced
stickiness and unbiased transport. We also emphasize the modifi-
cation in the transport barriers due to the symmetry breaking. We
show that, for an asymmetric case, the parameter space for the exis-
tence of the barrier can be considered as a disjoint set, for some cases,
and has a nontrivial structure.

Our paper is organized as follows: in Sec. II, we introduce the
ESNM, as well as the consequences of the new perturbation in the
phase space and in the symmetry of the system. In Sec. III, we
provide the parameter spaces related to the existence of a barrier
in the phase space for the extended map, as well as a method for

identifying the transport barriers for the asymmetric cases.
Section IV is dedicated to the directed transport discussion, where
we define our ratchet behavior and identify the preferential direction
for the chaotic trajectories. In Sec. V, we present our conclusions.

II. EXTENDED STANDARD NONTWIST MAP AND THE

SYMMETRY BREAKUP

The nontwist version of the extended standard map is defined
in Refs. 21 and 22 as

yn+1 = yn − b sin(2πxn) − c sin(2πmxn),

xn+1 = xn + a(1 − y2
n+1) mod 1,

(1)

where a, b, and c are real parameters and m ∈ Z. We consider
x ∈ [0, 1) and y ∈ R. Map (1) is called extended standard non-
twist map (ESNM) or two-frequency standard nontwist map.22 The
parameter a is the profile parameter and b and c are the amplitudes
of different source perturbations.21 If c = 0, we recover the stan-
dard nontwist map (SNM) proposed by del Castillo-Negrete and
Morrison.17 On the other hand, the extended twist standard map was
studied by Greene et al.23 from the perspective of fixed points with
high periods and a renormalization approach.

In order to investigate the role of the new perturbation
c sin(2πmxn), we construct the phase spaces for four cases of m,
a = 0.805, b = 0.597, and c = 0.005. The phase spaces for
m = 1, 2, 3, and 4 are shown in Fig. 1.

In Fig. 1, we have that all the phase spaces are composed of a
chaotic sea (black dots) and two chains of islands: one composed of
green dots and others of blue dots. The colored curves are the sym-
metry lines for the map (see Sec. III). For an odd m, m = 1 at (a)–(c)
and m = 3 at (g)–(i), the twin island chain scenario is observed in
the phase space, where the blue and the green islands are similar
[magnification in Figs. 1(b) and 1(c) and 1(h) and 1(i)]. The twin
islands have the same size, and the inner curves’ bifurcation happens
at the same point for both chains. In this case, the islands of each
chain highlighted in the magnifications are corresponding twins,
namely, the green island is the symmetrical transformation of the
blue one. However, for even m, this scenario is modified so that
the two chains of islands are not twins. For m = 2, Figs. 1(d)–1(f),
the blue islands are bigger than the green ones and the inner
structure is different. A similar situation happens for m = 4
[Figs. 1(j)–1(l)], the islands have different sizes and shapes, and we
see an island chain structure around the blue islands and not around
the green islands.

In Fig. 1, for even m, we see the breakup of the twin island
chain scenario, consequently, the breakup of a symmetry structure
of the system. Can we say that the map is asymmetric? A map M
is said to be symmetric over a transformation T if M satisfies the
TM = MT relationship. The standard nontwist map, c = 0 in (1), is
a symmetric map over the symmetry transformation,16

T =

(

x ±
1

2
, −y

)

. (2)

This transformation allows us to find two regular orbits with the
same winding number. We find a solution with winding number
ω applying the transformation (2) and find another orbit with the
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FIG. 1. Phase spaces and their respective amplifications of the islands a = 0.805, b = 0.597, c = 0.005, and (a)–(c) m = 1, (d)–(f) m = 2, (g)–(i) m = 3, and (j)–(l)
m = 4. The symmetry lines are represented by the colored curves: S0 in magenta, S1 in red, S2 in violet, and S4 in orange (more details in Sec. III).

same ω. Thus, an island in the blue chain with a winding num-
ber ω and its twin in the green chain (1) are related by Eq. (2). To
build the two island chains in Figs. 1(a) and 1(g), we find an ini-
tial condition, which generates the blue island chain and applies the
symmetry transformation to find the initial condition for the green
island chain.

If we apply the transformation (2) and the ESNM (1) in the
TM = MT relationship, we find the identities

(x ± 1/2) + a(1 − y2
n+1) = [x + a(1 − y2

n+1)] ± 1/2,

− y + b sin(2πx) + c(−1)m+1 sin(2πmx)

= −y + b sin(2πx) + c sin(2πmx),

(3)

where the second identity is true only if m is odd. Thus, for even m,
the map is asymmetric as shown in Figs. 1(d)–1(f) and 1(j)–1(l).

The twin island chain is a structure in nontwist systems24–27

with influence and effect on transport through the phase space. Due
to the different island scenarios for different values of m, the motion
of the chaotic trajectories in the phase space is an interesting point to
study. A simple analysis can be done by the average of y (the momen-
tum) over time. To obtain this average, we randomly choose a large
number of chaotic initial conditions, over y = 0, iterate and calcu-
late the spatial average 〈y〉 for each iteration n. The average 〈y〉 for
a = 0.805, b = 0.597, c = 0.005, and different values of m are shown
in Fig. 2.

The space average of y for odd m is close to zero during all iter-
ations, as shown in Fig. 2(a) for m = 1 (blue line) and for m = 3
(green line). Therefore, the orbits tend to go up and downward
equally in the phase space. For even m, this equality does not occur,
and we see a tendency of the average to always be negative dur-
ing all iterations, as shown in Fig. 2(a) for m = 2 (red line) and
m = 4 (orange line). According to Gong and Brumer,5 〈y〉 represents
the classical net current and once 〈y〉 6= 0, we observe a Hamil-
tonian ratchet effect for even values of m. The ratchet effects are
evidenced in the phase space in Figs. 2(c) and 2(e), where we plot
the first n = 1000 iterations for 100 initial conditions over y = 0
(green line) in the chaotic sea. The ratchet effects are exhibited in

Figs. 2(c) and 2(e) for m = 2 and m = 4, respectively, where we
observe an asymmetric concentration of points around the island
chains. In both cases, the concentration is higher around the upper
chain island, in accordance with the negative space average shown
in Fig. 2(a). The high density of points around the upper islands
indicates an unbiased stickiness where the orbits that go upward got
stuck in this region, while the orbits that go downward do not find
any trap or obstacle in their path. In this way, we have a preferen-
tial direction and a current in the phase space. For the symmetric
cases, m = 1 and m = 3, shown in Figs. 2(b) and 2(d), we see that
the concentration of points is symmetric, namely, the orbits get stick
whether they go upward or downward.

From the phases spaces in Fig. 1, the net current in Fig. 2(a),
and the chaotic trajectories also shown in Figs. 2(b)–2(e), we con-
clude that the symmetry breaking for even m generates directed
transport. The ratchet effects observed in our system are also sim-
ilar to the directed transport, characterized for a nonzero value of
〈y〉 in the extended standard map with spatial and temporal asym-
metry, which was examined by Cheon.28 The novelty in our result is
the observation of directed transport for nontwist systems and the
explanation of this scenario is related to the particular properties of
these systems, the broken twin islands scenario. The unbalanced and
asymmetric stickiness scenario around the two chains of islands are
responsible for the ratchet effect in these phase spaces.

III. PARAMETER SPACE

As shown by Wurm and Martini,22 the ESNM map ME can be
decomposed in two involutions as ME = I1 ◦ I0, where

I0(x, y) = (−x, y − b sin(2πx) − c sin(2πmx)),

I1(x, y) = (−x + a(1 − y2), y),
(4)

and the involution satisfies the relations M−1
E = I−1

i MEIi and
I2
i = I, for i = 0, 1, where I is the identity. The symmetry lines are

one-dimensional invariant sets composed by the points x = (x, y)
that are solutions for the relations I0,1x = x.16 For the ESNM, we
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FIG. 2. (a) Ensemble average of y in terms of 106 initial conditions randomly distributed on y = 0, the green line, at n = 0. We choose the same parameters as in Fig. 1
and each color represent a value of m: blue (m = 1), red (m = 2), green (m = 3), and orange (m = 4). The phase spaces for the first n = 1000 iterations of 100 chaotic
initial conditions uniformly distributed over y = 0 (green line) and (b) m = 1, (c) m = 2, (d) m = 3, and (e) m = 4.

have the following symmetry lines:

S0 =
{

(x, y)|x = 0
}

,

S1 =

{

(x, y)|x =
a(1 − y2)

2

}

.
(5)

The transformation of symmetry is necessary to determine the
indicator points (IPs) that indicate the presence of the shearless
curve.29,30 The indicator points allow us to study the reconnec-
tion of twin island chains and help us to identify the transition to
global chaos.30 The IP zi are solutions of Iizi = Tzi,30 where Ii are
the involution (4) and T is the symmetry transformation (2). Since
the symmetry transformation is valid only for odd m, as shown in

FIG. 3. Parameter spaces for the existence of the shearless curve for odd m and different values of c. In (a), we see the parameter spaces for m = 1 and in (b) for m = 3.
The parameter spaces are superimposed on each other.
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Eq. (3), the indicator points can be defined as m = 1 and m = 3.
Therefore, the indicator points for ESNM with odd m are given by

z0
(0,1) =

(

∓
1

4
, ∓

b

2
+ (−1)

m±1
2

c

2

)

, z1
(0,1) =

(

a

2
∓

1

4
, 0

)

, (6)

as also shown in Ref. 22. If the indicator points belong to a reg-
ular orbit, they belong to the shearless curve,30 and we can use
this information to study the persistence and the breakup of the
curve. The parameter space for the existence of the shearless curve is
constructed by inspecting the trajectory of the indicator points.29,30

The method consists of iterating all the indicator points for a long
time interval. If the trajectory remains between a certain value of y,
|y| < 10, the trajectory is a regular solution and the shearless curve
exists in the phase space. Applying this method for each pair (a, b)
and for a ≥ 0.8, if the shearless curve exists, we plot a point in the
parameter space and, if it does not, we leave it blank. The parame-
ter spaces for m = 1, m = 3, and different values of c are shown in
Fig. 3. We choose a ≥ 0.8 due to the fact that our calculations are in
this region of the parameter space.

The parameter space for the standard nontwist map (for
c = 0.000) can be seen in Ref. 29. The parameter space for the sym-
metric cases for m = 1 of ESNM is exhibited in Figs. 3(a) and 3(b).
When increasing the perturbation amplitude c, the number of points
for the existence of the shearless curve decreases. The shape for
m = 1 of the parameter space is preserved, and, for higher values
of m, there is a shift of the critical curve, the boundary between the
colored and the white region, for lower values of b. In a different
way, for m = 3, the shape of the colored region for different values
of c is relatively distinct. When the values of c increase, the param-
eter space shows an even more nontrivial structure. However, we
only see a decrease in the number of points (a, b) where the shear-
less curve exists. The perturbation always anticipates the breakup of
the shearless curve. We corroborate this observation by calculating

TABLE I. Fraction of the colored region of the parameter space region a∈ [0.8, 1.0]

and b∈ [0, 1]. The increase in the c values decreases the area corresponding to the

existence of the barrier.

c = 0.005 c = 0.050 c = 0.100

m = 1 0.42 0.37 0.32
m = 3 0.41 0.28 0.16

the fraction of the region of the parameter space with the existence
of the shearless curve (colored region area), as shown in Table I.

For even m, we need another strategy to determine the pres-
ence of the barriers and to estimate the critic values of a and b for
the breakup of the last barrier, since for this case, the map is asym-
metric and the indicator points do not exist. The method used in
this work is based on the construction of escape basins in the phase
space. An escape basin is defined by the set of initial conditions in
the phase space that escape for a specific and previously defined exit.
In a previous work, we define as exits for the standard nontwist map
the lines y = ±1.24 We use the same setup here: there are two exits
A and B placed in the lines y = 1 and y = −1 and the respective
escape basins for each exit is the set of initial conditions that, after
some time τ , their trajectories cross the exit lines. If the trajectory
does not escape until the time limit τ , we assume that the orbit is
regular, an island or a barrier, or the orbit is trapped in a stickiness
region.

To construct the parameter space based on the escape
basin concept, we consider, for a map with m = 2, a grid of
1000 × 2000 initial conditions uniformly distributed over the region
{[0, 1) × (−1, 1)} in the phase space. If the trajectory from an ini-
tial condition crosses y = 1 (y = −1), until τ = 1000 iterations, we
mark this initial point by a purple (orange) point, otherwise, the

FIG. 4. Two examples of escape basins for the extended standard nontwist map. The orange (purple) points represent the initial conditions of trajectories that cross the exit
lines y = −1.0 (y = 1.0) and the white points indicate regular orbits that do not escape until n = τ = 1000 iterations. In (a), we have a total barrier between the two basins,
and in (b), we do not see a regular region separating the two colored regions. The parameters are a = 0.823, c = 0.005, m = 2 in both cases and (a) b = 0.487 and (b)
b = 0.495.
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FIG. 5. Superposition of parameter spaces for the existence of a barrier in the phase space for different values of c and even values of m: (a) m = 2 and (b) m = 4.

point is left blank. In this way, the barriers in the phase space are
represented by white points in the escape basin scenario. If there is
a total barrier in the phase space, it would be a continuous white
region between the two colored escape basins. When the barrier is
broken, the two escape basins are side by side and we identify regions
where the basins are connected. We see this scenario in Fig. 4 where
we build the escape basins for two cases of the ESNM: (a) for a case
where there is a total barrier and (b) where the barrier is missing.
We observe the details of the frontier between the two basins in the
magnification placed in the right corner of each figure.

To identify the absence of the white region between the two
basins, as shown in Fig. 4(b), we utilize the procedure of dividing the
phase space in boxes from the basin entropy evaluation.24,31 First, we
construct the escape basins as stated before and then we divide the
phase space into Nboxes = 200 × 400 boxes with 25 initial conditions
in each. Then, we analyze each box searching for a configuration
that indicates the mixing between the basins. If there is a barrier,
we observe three cases: boxes with one color, boxes with one color
and white points, as represented in the red boxes inside the magni-
fication in Fig. 4(a), and boxes with the two colors of the basins and
white points, when the barrier is narrow. When the barrier is broken,
we see the same cases, where the white points can be a consequence
of islands or stickiness regions. We also observe a new case, where
there are boxes with the two colors and no white region between the
two escape basins, as we see in Fig. 4(b). In this way, the basins share
a common boundary and if we find a box with the two colors and

TABLE II. The area of the colored region of the parameter space region shown in

Fig. 5. The increase in c for m= 4 causes a decrease in the area for the existence

of a barrier. For m= 2, c= 0.050 presents an area slightly bigger than c= 0.005 and

c= 0.100.

c = 0.005 c = 0.050 c = 0.100

m = 2 0.43 0.45 0.42
m = 4 0.43 0.28 0.11

no white points, we consider that there is no barrier in the phase
space.

Following the method described above, we evaluate the space
parameter for the three values of c previously indicated. For each
pair (a, b), we verify if there is a barrier in the phase space, i.e., if
all the boxes are in the three categories specified previously. If there
is a barrier the point will be plotted, otherwise the point will be left
blank. The parameter spaces for even values of m are exhibited in
Fig. 5.

Observing the parameter spaces in Fig. 5, we see that the
increase of the c values does not always imply a decrease in the region
that represents the existence of a regular curve. In Table II, we show
the area of the barrier region in the parameter space (the colored
region). For m = 2, we see the opposite scenario for odd m. As c
grows, the critical curve of the parameter space changes to higher
values of b, which means that for some regions of the space the per-
turbation c sin(2πmx) postpone the break up of the last curve. For
a better visualization, we invert the order of plotting the parameter
spaces and bring the red space (smaller c) to the front. We cannot
affirm that the last curve is the shearless curve, once there is not
a confirmation that the last curve is a shearless one.29 For m = 4,
the scenario is similar to m = 3. In Fig. 3(b), the colored region
decreases as the perturbation amplitude c grows, as quantified and
exposed in Table II. We verify that the shape of the parameter space
is not preserved. One interesting phenomenon to pint out is the
nontrivial shape of the parameter space for m = 4 and c = 0.050.
For this case, we have a disjointed set where we can see “holes”
in the region, between a = 0.8 and a = 0.85, causing a non-unique
boundary.

IV. DIRECTED TRANSPORT

As shown before, the ESNM presents a Hamiltonian ratchet in
the phase space, i.e., a directed transport for the asymmetric case
represented by even m. The ratchet effects are exhibited in Fig. 2(a)
by the non-zero value of 〈y〉 during the time evolution. There are
many methods to describe the transport properties in the system.3 In
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FIG. 6. Number of chaotic trajectories with initial conditions at y = 0 that cross y = 1 (Nup represented by the purple curve) or y = −1 (Ndown represented by the orange
curve) and the difference D = Nup − Ndown indicated by the black curve, calculated for each value of b. In this case, a = 0.805, c = 0.050, (a)m = 1, (b)m = 2, (c)m = 3,
and (d) m = 4.

this work, we proposed a new method to study the directed transport
in the phase space. It is similar to the transmissivity24,32 and inves-
tigates the tendency of the trajectories goes to a specific direction
in y.

To describe the tendency of the transport in the phase space,
we choose 106 initial conditions that belong to the chaotic sea over
y = 0 and iterate them for n = 1000. Then, we count how many
trajectories go to the upper region of the phase space crossing the

FIG. 7. Parameter space for the difference of the number of trajectories D for even m and different values of c. The yellow (red) points indicate a set of parameters (a, b)
where the trajectories started in y = 0 tend to go upward (downward) in the phase space. The values of c andm are c = 0.005 for the first column, c = 0.050 for the second
one and c = 0.100 for the third column. For m, we have m = 2 for the first upper row and m = 4 for the lower row.
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line y = 1 and how many go to the lower region crossing y = −1
and normalize this number by the total number of trajectories.
The fraction of the number of trajectories that go upward (down-
ward) in the phase space is designated by Nup (Ndown). Once we
are interested in the transport tendency, we calculate the difference
D = Nup − Ndown. If D > 0 (D < 0), we have most of trajectories
going to the upper (lower) region in the phase space and, conse-
quently, a ratchet that directs the transport to the upward (down-
ward) direction.Otherwise, if D = 0, we do not have a directed
transport, the tendency to go to any direction is the same.

Fixing a = 0.805 and c = 0.050, we calculate Nup, Ndown, and
the difference D for different values of b and m. The results are
shown in Fig. 6. As expected, the difference D (black curve) between
the number of trajectories that go upward and downward is null
for the symmetric case m = 1 [Fig. 6(a)] and m = 3 [Fig. 6(c)]. In
the odd case, we have an equal tendency of the trajectories: 50% go
upward (Nup = 0.5, the purple curve with purple × symbol) and
50% of the solutions go downward (Ndown = 0.5, the orange curve
with an orange star symbol).

A different scenario is presented for even m. For the asymmet-
ric case, shown in Figs. 6(b) and 6(d), we see that the number of
chaotic trajectories that go upward and downward oscillates around
N = 0.5, but Ndown 6= Nup for almost all values of b. Therefore, there
is a ratchet-like scenario in these cases.

In Fig. 6, we fix the value of a in a = 0.805. If we calculate the
difference D for all parameter pairs (a, b) in the parameter spaces in
Fig. 5, where there is no barrier, we obtain the parameter space for
the directed transport, as shown in Fig. 7. In the parameter spaces
shown in Fig. 7, the white region represents the pair of parame-
ters (a, b) where there is a barrier (parameter spaces in Fig. 5). The
colored regions represent three different scenarios: transport with
no preferential direction (black region), upward directed transport
(yellow region), and downward directed transport (red region).

For m = 2 in Figs. 7(a)–7(c), we see the prevalence of down-
ward directed transport as the values of c grow. For c = 0.005,
Fig. 7(a), there is a significant undirected transport region and a
small yellow region for upward transport. When the c values grow
to c = 0.050 and c = 0.100, the black region is small and is concen-
trated at the border of the red and yellow regions. Upward directed
transport is most likely to occur at c = 0.050. If we increase the per-
turbation, we see in Fig. 7(c) that the yellow region is concentrated
in a portion of the parameter space and the red regions show up,
indicating the preference for downward directed transport.

In Figs. 7(d)–7(f), we compute the parameter spaces for m = 4
and observe the opposite scenario. The undirected transport, in this
case, is also more likely to occur at small values of c, as c = 0.005
[Fig. 7(d)]. However, as c grows, we see the predominance of the
yellow region in the parameter space. For c = 0.050 and c = 0.100,
we have few black points and red regions immerse in the big yel-
low area. Therefore, for m = 4 there is a preference for the upward
direction for transport.

The distribution of the colored regions is not trivial. There is
no simple structure in the parameter space, so it is not possible
to predict the preferential direction of the transport, it is neces-
sary to calculate the difference for each pair (a, b). This observation
corroborates with Cheon’s remark that the directed transport is
controllable but not predictable.28

V. CONCLUSIONS

In this work, we study the consequences of a new perturba-
tion with the form c sin(2πmx) added to the well studied nontwist
standard map. This new perturbation leads to the extended non-
twist standard map (ENSM). In ESNM, we verify the existence of
a symmetric and intuitive behavior when m is odd and an oppo-
site case when the system presents itself as an asymmetric one with
counterintuitive features, for even values of m.

For the odd cases, m = 1 and m = 3, the scenario of twin island
chains is preserved, i.e., the two island chains are equal and the
islands have the same size and inner structure. Consequently, the
stickiness observed around the two chains is equivalent. One point
noted in the asymmetric case, even m, is the breakup of this scenario
of twin islands. The islands of different chains are not correspon-
dent and the bifurcations of the inner curves happen at different
parameters. An unbalanced stickiness is also observed in a high con-
centration of points in the chaotic sea around one specific island
chain.

The mechanism responsible for the twin island scenario
breakup is the spatial asymmetry represented by the violation of the
relation between the map M and the symmetry transformation T:
TM 6= MT. For odd m, the relationship is valid, the indicator points
can be defined and the parameter space for the existence of the
shearless can be constructed. The main effect of the new perturba-
tion in the barriers in the phase space for the symmetric case is the
anticipation of the breakup of the shearless curve. For higher values
of amplitude c, the curve breaks for lower values of b.

Once the symmetry transformation cannot be applied in the
system for even m, we proposed a new method to construct the
parameter space, which is based on the analysis of the escape basins
and the mixing between them. From this method, the parameter
spaces for the existence of a barrier are presented as nontrivial and
counterintuitive. For m = 2, when c grows, the number of points
in the parameter spaces can also increase, as we see for c = 0.050.
Increasing the amplitude of the perturbation can postpone the
breakup of the barriers in the ESNM. For m = 4, we recover the
intuitive phenomenon of anticipating the breakup of the barrier as c
grows, but we identify a nontrivial structure in the parameter space.
For c = 0.050, we find a disjoint set of points in the parameter space,
as well as the boundary between the colored and the blank regions is
more complicated and is not unique.

In the final part of our work, we study the transport in the phase
space. Due to the spatial symmetry breaking, which occurs with even
m, we identify a preferential direction for the chaotic trajectories to
go up or down in y. Defining the difference between the fraction
of trajectories that go up and down, we observe in the parameter
space some regions of (a, b) where the transport has a negative pref-
erential direction, represented by the red color in Fig. 7. This red
region is dominant for m = 2 and vanishes for m = 4 as the c value
increases. For m = 4, we see the dominance of the yellow regions
that represents a preferred upward direction. In this case, the yellow
region grows and the red region vanishes for higher values of c. In
both cases, we observe that for some points (a, b), there is a symmet-
ric transport and no preferential direction for the chaotic solutions.
The black region (no preferential direction) is more predominant
for lower values of c. This region decreases and concentrates on the
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boundary between the yellow and red regions for high c. In this way,
we show that the Hamiltonian ratchet effect is due to directed trans-
port and is a possible phenomenon for this system but the direction
for a set of parameters (a, b, c) is not predictable.
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