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Abstract Isochronous islands are regular solutions related to different chains of elliptic points but with the
same winding number. These isochronous islands emerge in phase space as a response to multiple resonant
perturbations and can be simulated using a simple discrete model called the two-harmonic standard map.
We observed three types of isochronous transitions, which can be formed through saddle-node and pitchfork
bifurcations.

1 Introduction

In dynamical systems, isochronous islands are distinct regular solutions with the same frequency(rotation number)
that surround different elliptic points of the same period. In the plasma physics literature, such islands are called
heteroclinic and recent studies present theoretical and experimental evidence of the emergence of such islands
within magnetically confined plasmas in tokamaks [1, 2]. In the plasma, for example, isochronous islands occur
due to the interaction between multiple tearing modes which grow in the same rational surface, which lead to
heteroclinic/isochronous bifurcations responsible for the emergence of the islands [1]. The presence of isochronous
islands are identified in several dynamical models related to nonlinear oscillators [3], electron beam interactions
with electrostatic waves[4], periodic lattices[5], molecular physics [6], billiards [7] and, as already mentioned, plasma
physics [1, 2, 8, 9].

These isochronous bifurcations can be simulated by a simple discrete model, named the two-harmonic standard
map (THSM), proposed and analyzed in Ref. [10] as a model for the competition between different resonant
modes. According to the Poincaré–Birkhoff theorem, any resonance with a rational winding number r/s leads to
the emergence of 2k periodic orbits with period s, with k ∈ N,[11] which moves r steps in the positive direction
[12]. In this scenario, half of these orbits are unstable (hyperbolic points) and the other half is stable. If k > 1, we
have distinct islands with the same winding number, i.e., isochronous islands.

It was shown that isochronous islands emerge in the phase space as a response to multiple resonant perturbations
and the number of islands depends on the system’s characteristic and the amplitude perturbations. The isochronous
islands occurs in the same winding number surfaces, i.e., only modes with the same ratio as winding number can
interact and cause the emergence of isochronous islands. The winding number (r1, s1) can be different than (r2,
s2), but the ratios r1/s1 and r2/s2 must be equal [8]. Besides the THSM, more complex models can also present
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the emergence of isochronous islands[4, 8]. As shown for the THSM, sadlle-node and pitchfork bifurcations formed
the transitions responsible for the emergence of isochronous islands in the same frequency surface [10].

In this paper, we consider and discuss isochronous bifurcations for other modes not presented in Ref. [10]. In Sect.
2, we present the two-harmonic standard map model and discuss the role of each competing model in the system.
The competition between the modes and the isochronous transitions are analyzed in Sect. 3. Our conclusions are
presented in Sect. 4.

2 The model

The two-harmonic standard map is proposed as a generalization of the extended standard map, investigated in
Refs. [13–20], and it is defined by the equations[10]:

xn+1 = xn + yn+1,

yn+1 = yn − K1

2πm1
sin(2πm1xn) − K2

2πm2
sin(2πm2xn),

(1)

where K1, K2 ∈ R and m1, m2 ∈ N. The two-harmonic standard map is a generic model to describe a dynamical
system under the influence of two perturbations. A relationship between the perturbations produces a resonance-
competing mode on the same KAM torus, leading to isochronous islands in phase space. The numbers m1 and
m2 identify the wavenumbers of the perturbations and are referred to as the modes acting on the system. Each
perturbation has an amplitude Ki, with i = 1, 2, and, depending on the values of the amplitudes, the system can
exhibit m1 to m2 islands, with m2 > m1. We take mod 1 for both variables in (1).

To understand the effect of each mode, represented by each sine function in (1), we study each mode separately
by computing the phase spaces for the system with only one non-zero perturbation. First, we consider m1 = 1,
K1 �= 0 and K2 = 0. The resulting phase space is presented in Fig. 1a. As a second example, we choose m2 = 5,
K2 �= 0 and K1 = 0, and, the phase space for this scenario is presented in Fig. 1b.

In Fig. 1a, we present the phase space for m1 = 1, K1 = 0.01 and K2 = 0, i.e., we have just the perturbation
related to mode m1. For this scenario, we observe islands, indicated in blue, around the only elliptic orbit in line
y = 0. The elliptic point has period 1 and it is centered in (x, y) = (0, 0). For Fig. 1b, we present the phase space
when the only mode in the system is m2 = 5. The perturbation amplitudes are K1 = 0 e K1 = 0.01. In this case,

Fig. 1 Phase spaces and winding number profile for isolated modes. In (a), we observe the phase space for m1 = 1,
K1 = 0.01 and K2 = 0.0. For (b), we have the isolated mode m2 = 5, with K1 = 0 e K2 = 0.01. The winding number,
defined in Eq. (2), is computed for each initial condition in the dashed lines indicated in the phase spaces. The respective
winding number profiles for (a) and (b) are shown in panel (c) and (d). In phase spaces presented in (a) and (b), each
color indicates a different isochronous island, i.e., regular solutions around different elliptic orbits
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we observe five distinct islands circulating five distinct elliptic points of period 1 in y = 0. Each island is indicated
by a different color to highlight that they are distinct solutions. These islands are called isochronous, they have
the same period but are distinct islands.

We observe a similar structure in both phase spaces shown in Fig. 1. Each phase space is composed of quasi-
periodic KAM-type curves, indicated by the black spanning curves, and islands surrounding elliptic points, indi-
cated by the colored closed curves. The islands correspond to regular solutions around stable periodic orbits, i.e.,
the fixed elliptic points of period 1.

With the phase spaces in Fig. 1a, b, we identify the effect of each mode in the system: the mode m1, 2 indicates
the number of elliptic points of period 1 in y = 0. Along with the phase space, we also compute the winding
number profile. The winding number is defined by the limit

ωn = lim
n→∞

xn − x0

n
, (2)

where the variable xn is lifted to the real line. If the limit in Eq. (2) converges, we have a regular orbit, which
can be periodic or quasi-periodic. If the solution is chaotic, the limit does not converge. To compute the winding
number in relation to y , we select 104 initial conditions in the x lines depicted in Fig. 1a, b as dashed lines, i.e,
x = 0 for panel (a) and x = 0.1 for panel (b). We evolve each initial condition for 105 iterations, compute the
difference xn−x0 for each iteration and verify if it converges. The winding number profiles computed in the dashed
lines of Fig. 1a, b are shown in Fig. 1c, d, respectively.

From the winding number profiles shown in Fig. 1c, d, we observe a monotonic increasing profile with a plateau
centered in y = 0. The region of the profile where we observe an increasing relationship between the rotation number
and y corresponds to the invariant curves (black curves), since the rotation number of these curves depends on
their position (i.e., the value of y). In contrast, the plateau regions indicate the presence of islands, and their
width reflects the extent of the island region, as the rotation number is constant for all islands surrounding a given
elliptic point. The winding number value ωn = 0 is constant for the only island in Fig. 1a and for the five distinct
islands in Fig. 1b. With this, we say the islands of both phase spaces are in the same winding number surface. As
shown in Refs. [8–10], it is necessary for islands with the same winding number to lie on the same rational surface
for isochronous bifurcations to occur. As discussed in more details in Ref. [10], when K1 and K2 are nonzero,
we can have isochronous bifurcations, leading to transitions from mode m1 to mode m2. Now, we investigate the
scenario with two modes acting on the systems, for nonzero K1 and K2.

3 Isochronous transitions

A m1 → m2 transition occurs by isochronous bifurcations, i.e., the emergence of elliptic orbits on the same winding
number surface, leading to the emergence of islands with equal winding number and isochronous behavior in the
system. With this in mind, we investigate the bifurcation diagrams for the fixed points in the phase space. Setting
K1 = 0.05, we find the fixed points of the systems for increasing values of K2. The fixed points are computed
numerically by checking whether the orbit generated by a given point returns to its initial position. After that,
we identify the stability via orbit convergence: if nearby orbits remain close (or diverge), the point is elliptic (or
hyperbolic). We compute the bifurcation diagrams and phase spaces for the stages before and after the isochronous
bifurcations.

We initiate our analysis by the case of Fig. 1, m1 = 1 and m2 = 5. The respective results are shown in Fig. 2.
In Fig. 2a, we have the bifurcation diagram for the fixed points of the case m1 = 1 and m2 = 5, with K1 = 0.05.

Up to K2 = 0.2, we observe only one elliptic point and one hyperbolic points, the black and gray points at x∗ = 0
and x∗ = 0.5, respectively. At K2 = 0.2, we observe the emergence of four pairs of black–gray points in the
system. If we analyze the eigenvalues of the new fixed points, we observe that the black points have complex
eigenvalues, i.e.,, elliptic points, while the gray points have real eigenvalues, indicating hyperbolic points. At
the bifurcation point, the eigenvalues have modulus 1 (see Appendix for more information). The creation of a
pair of elliptic–hyperbolic points is the consequence of saddle-node bifurcations. Here, we have four supercritical
bifurcations, since we have the creation of fixed points [21, 22]. All four bifurcations occur at the same value of
K2, leading to a transition with no intermediate modes.

The phase space for the system before the transition is shown in Fig. 2b, for K2 = 0.04. We observe only one
island centered in the orange fixed point (0, 0). After the 1 → 5 transition occurred, we have the scenario depicted
in Fig. 2c, where we observe five isochronous islands centered in elliptic points on line y = 0. The elliptic points
are indicated by the colored points. As show in the diagram, all fixed points emerge by saddle-node bifurcations,
characterizing the first observed type of transition from mode m1 to m2.

Next, we analyze the case where m1 = 3 and m2 = 4. From the bifurcation diagram, shown in Fig. 3a, we
observe that there are only three elliptic points for K2 < 0.5, indicating the predominance of mode m1 = 3. For
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Fig. 2 Transition from mode m1 = 1 to m2 = 5, with K1 = 0.05. (a) The bifurcation diagram shows the evolution of
the fixed points, where the elliptic and hyperbolic points are represented by black and gray points, respectively. We chose
K2 = 0.04 for the scenario before the isochronous bifurcations and K2 = 0.25, for the scenario after it. Both values are
highlighted by color vertical lines in panel (a). The respective phase spaces are shown in panels (b) and (c), where the
frame color is related to the color line in (a). In the phase spaces, we use different colors to plot the islands surrounding
distinct elliptic orbits. The invariant curves are shown in black and the colored points are the elliptic points

Fig. 3 3 → 4 transition by pitchfork bifurcation. In the bifurcation diagram in panel (a), we observe the occurrence of a
pitchfork bifurcation at K2 = K1 = 0.05, where the hyperbolic point at x∗ = 0.5 becomes elliptic and two new hyperbolic
points emerge. The scenario before the transition is shown in (b), with K2 = 0.04, while the scenario after the transition is
depicted in (c), with K2 = 0.15. As in Fig. 2, the black (gray) points in the bifurcation diagram indicate stable (unstable)
fixed points. For the phase spaces, each color represents the islands that surround different elliptic points indicated by the
same color

higher values of K2, we have the emergence of one new elliptic point in x∗ = 0.5 and the total of elliptic points on
the line y = 0 is four. The new elliptic point emerges in a different manner compared to the scenario observed in
the bifurcation diagram of Fig. 2. In this case, the hyperbolic fixed point at (0.5, 0) (gray point) becomes elliptic
(black point) at the bifurcation, and two new hyperbolic points emerge on either side of it. Here, we observe the
occurrence of a pitchfork bifurcation. This kind of bifurcation occurs in systems which have symmetry, for example,
if a systems satisfies f(−x) = −f(x) [22, 23]. The standard map and the two-harmonic standard both satisfy this
relation for x and y , thus they are symmetric with respect to the symmetry x → −x and y → −y, which makes
the pitchfork a possible bifurcation in the system.

From the bifurcation diagram shown in Fig. 3a, we observe that the 3 → 4 transition occurs by a pitchfork
bifurcation in the hyperbolic point at x∗ = 0.5. In the bifurcation, the hyperbolic point becomes elliptic and two
new hyperbolic points emerge in the system. Before this isochronous transition, we have the scenario depicted in
Fig. 3b, where we observe three islands identified with different color. The hyperbolic point at x = 0.5 is highlighted
by the presence of a separatrix structure. A post-transition scenario is shown in Fig. 3c, a phase space with four
islands. We observe that the “separatrix” structure disappears and a new island, centered at x = 0.5, emerges in
the phase space. The sequence of Fig. 3 represents the second type of possible transition, that is, a transition by
pitchfork bifurcation with no intermediate mode. We present a eigenvalue analysis fro the pitchfork bifurcation in
the Appendix.

Finally, we investigate the 2 → 5 transition, which represent the third type of transition characterized by the
presence of intermediate modes, i.e., an island structure with a number of isochronous island between m1 and m2

that exist for a certain range of parameters. The bifurcation diagrams and the respective phase spaces are shown
in Fig. 4.
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Fig. 4 Transition with intermediate modes, for m1 = 2, m2 = 5 and K1 = 0.05. The bifurcation diagram in panel (a) shows
the evolution of the fixed points in the systems, where we observe first a pitchfork bifurcation followed by two saddle-node
bifurcations. For the first mode, we have the phase space shown in (b) with K2 = 0.04. The intermediate mode is represented
in (c) for K2 = 0.1. Finally, we have the predominance of the second mode in (d), where K2 = 0.2. As in the previous
figures, the colored dots represent elliptic points

In the bifurcation diagram of Fig. 4a, we observe two isochronous bifurcations occurring at different values of
K2. First, there is a pitchfork bifurcation in K2 = K1 = 0.5, where the elliptic point at x = 0.5 becomes hyperbolic
and two new elliptic points emerge in the system. As a result, an intermediate mode arises, where three islands are
present in the phase space. Second, we observe two saddle-node bifurcations at K2 ≈ 0.13, where two fixed points
emerge around the elliptic point at x = 0. These two saddle-node bifurcations complete the 2 → 5 transition.

Just as in the case of Ref. [10], we analyze all the m1 → m2 transitions with m1 ∈ [1, 5] and m2 ∈ [m1 + 1, 6].
All the bifurcation diagrams can be checked in the Supplementary Material [24].

4 Conclusions

The emergence of isochronous islands occurs due to the superposition of distinct resonant modes interacting on the
same winding number surface. In the two-harmonic standard map, the integers m1 and m2 correspond to the two
resonant modes acting on the system. Depending on the amplitudes K1 and K2, the system can exhibit between
m1 and m2 islands, where m2 > m1.

We observed the emergence of new islands as the amplitude of the second mode increases, forming three types
of isochronous transitions. The first one occurs through saddle-node bifurcations, where (m2 −m1) pairs of elliptic
and hyperbolic points emerge in the phase space for the same values of the parameters K1 and K2. Since we have
the creation of fixed points, the saddle-node bifurcations are always supercritical.

The second route, from m1 to m2 islands, involves pitchfork bifurcations, where stable and unstable fixed points
change their stability and two other fixed points with opposite stability emerge in the phase space. Finally, we
have the isochronous transition with intermediate mode, i.e., the m1 → m2 transition does not occur directly. For
this last transition, we observe a combination of pitchfork and saddle-node bifurcations. In the diagram presented
here, the pitchfork bifurcation occurs first, followed by simultaneous saddle-node bifurcations.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1140/
epjs/s11734-025-01867-7.
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Appendix: Eigenvalue analysis for bifurcation identification

In discrete-time Hamiltonian systems, a periodic orbit is created, destroyed, or collides with another periodic orbit
of the same period if the tangent map has an eigenvalue equal to unity, i.e., λ = 1 [26]. The process of creation,
destruction or collision is a bifurcation process and it happens on a fixed point for a specific parameter value.

In terms of the eigenvalues of the tangent map, an elliptic point has complex eigenvalues that lie on the unit
circle. In other hand, hyperbolic points have real eigenvalues and, for the two dimensional case, |λ1|> 1 > |λ2|
[22].

With the information presented above, we revisit the bifurcation diagram of Figs. 2, 3 and 4, and analyze the
behavior of the eigenvalues on the bifurcation points. We compute the modulus of the two eigenvalues and analyze
their imaginary parts. For elliptic points, the imaginary parts of the eigenvalues have the same magnitude but
opposite signs, so we consider only the modulus of the imaginary part

In Fig. 2, we observe the emergence of a hyperbolic point along with an elliptic point after the bifurcation point,
characterizing a saddle-node bifurcation. Following the eigenvalues for one bifurcation (all four bifurcation behave
the same) we have the results presented in Fig. 5.

With the results presented in Fig. 5 , we identify a hyperbolic point in the lower branch of the diagram. For this
branch, we observe two real eigenvalues with |λ1|> 1 > |λ2| (first and second panels) and Im(λ) = 0. For the upper
branch, we have an elliptic point with modulus equal to one and non-null imaginary part. This result corroborates
the observation from the diagram in Fig. 2, where we identify the emergence of elliptic and hyperbolic points after
the bifurcation point, characterizing a saddle-node bifurcation.

Next, we analyze the pitchfork bifurcation presented in the diagram of Fig. 3. In a pitchfork bifurcation, one fixed
point changes its stability, and two new fixed points—with the original stability of the initial fixed point—emerge
in the phase space. The results for the pitchfork bifurcations are shown in Fig. 6.

Analyzing all the panels presented in Fig. 6, we observe a hyperbolic point, with zero imaginary part and
eigenvalues satisfying |λ1|> 1 > |λ2|, changing its stability and becoming an elliptic point with complex eigenvalues

Fig. 5 Eigenvalues for a saddle-node bifurcation presented in Fig. 2. For the first and second diagrams, red (green) points
indicate modulus smaller (greater) than one, while yellow points indicate modulus equal to one. In the third panel we
present the modulus of the imaginary part of the eigenvalues. In this case, black points indicate null imaginary part and
colored points indicate non-null values

Fig. 6 Eigenvalues for the pitchfork bifurcation presented in the diagram of Fig. 3. We use the same color scale of Fig. 5.
In this bifurcation, we observe a hyperbolic point becoming an elliptic point, with two new hyperbolic points emerging on
either side
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Fig. 7 Eigenvalue analysis for the pitchfork bifurcation of Fig. 4. From the modulus analysis (first and second panel) and
the information about the imaginary part (third panel), we conclude that an elliptic point changes its stability and two
new elliptic points emerge in the system

Fig. 8 Configuration of the eigenvalues for a saddle-node bifurcation of the diagram in Fig. 4. We observe the emergence
of a hyperbolic point (real values of λ) and a elliptic point (complex λ with modulus equal to one) after the bifurcation
point

and |λ1, 2|= 1. Along with this stability change, two hyperbolic points emerge on either side of the new elliptic
point, characterizing a pitchfork bifurcation.

In the diagram of Fig. 4, we have both types of bifurcations as K2 increases. The behavior of the eigenvalues are
the same presented in Figs. 5 and 6. In Fig. 7, we present the eigenvalues associated with the pitchfork bifurcation
shown in the diagram of Fig. 4. In this case, we observe an elliptic point changing its stability and becoming
hyperbolic, with two new elliptic points emerging in the diagram. For the saddle-node bifurcations, we present
the eigenvalues for one bifurcation in Fig. 8. Again, from the eigenvalue analysis, we observe the emergence of
hyperbolic and elliptic points after the bifurcation point.

References
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